1
|
Agosto Nieves R, Gomez Dopazo G, Rosenfeld J, Tran HH, Alvarado Lopez L, Sotero-Esteva J, Fasoli E, Dmochowski IJ, Lee D, Bansal V. Using Hybrid Coating to Fabricate Highly Stable and Expandable Transparent Liquid Marbles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68336-68347. [PMID: 39601688 DOI: 10.1021/acsami.4c14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Liquid marbles (LMs) are microliter-scale droplets coated with hydrophobic solid particles. The particle size and hydrophobicity of the surface coating determine their properties, such as transparency, expandability, and resistance to evaporation and coalescence, one or more of which can be critical to their application as microreactors. This study reports the use of a mixture of two different hydrophobic powders for fabrication of LMs for colorimetric assays: trichloro(1H,1H,2H,2H-perfluorooctyl) silane-linked silica gel (modified silica gel (MSG), particle size: 40-75 μm) and hexamethyldisilazane-linked fumed silica (modified fumed silica (MFS), average aggregate length: 200-300 nm). The hybrid coating mixture (MIX) prepared by mixing these MSG and MFS powders in a ratio of 3:7 (w/w), respectively, contained particles of different sizes as well as different hydrophobicity as the silane linked to MSG is more hydrophobic than the one linked to MFS. LMs fabricated using MIX as the surface coating were characterized and compared to LMs coated with MSG or MFS alone. It was observed that MIX LMs were comparable to the MFS LMs in transparency (higher than the MSG LMs), expandability (more than 20 times their initial volume), and stability against evaporation (for more than 4 h at 78% relative humidity at 26 °C). However, in terms of resistance to coalescence, the MIX LMs showed a resistance comparable to that of MSG LMs, much higher than that of MFS LMs. Further experiments demonstrated that it is the presence of the particles of different sizes (MSG particles are ∼100 times larger than MFS) that improves the resistance to coalescence rather than the higher hydrophobicity of the MSG. Three different colorimetric assays were performed in the MIX LMs, and the results obtained were comparable in accuracy and precision to those obtained in a standard polystyrene microwell plate system. Low quantities of the analytes could be detected and quantified, as evidenced by the limit of detection (alkaline phosphatase (AP): 0.18 μg/mL; bovine serum albumin (BSA): 2.28 μg/mL; and chymotrypsin: 3.69 μM) and limit of quantification (AP: 0.59 μg/mL; BSA: 12.29 μg/mL; and chymotrypsin: 7.59 μM) values. Color intensities in LMs were quantified using a smartphone application, which provides the added benefit of an instrument-free approach. These findings highlight the potential of using LMs stabilized with mixtures of nano- and microparticles as robust, versatile microreactors for portable and sensitive colorimetric assays, paving the way for more accessible and efficient diagnostic tools.
Collapse
Affiliation(s)
- Renis Agosto Nieves
- Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
| | - Gabriela Gomez Dopazo
- Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Joseph Rosenfeld
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hong-Huy Tran
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Lyanivette Alvarado Lopez
- Department of Biology, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
| | - Jose Sotero-Esteva
- Department of Mathematics, University of Puerto Rico at Humacao, CUH Station, Humacao, Puerto Rico 00791, United States
| | - Ezio Fasoli
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, Puerto Rico 00791, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231S, 34th Street, Philadelphia, Pennsylvania 19104-63223, United States
| | - Daeyeon Lee
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Vibha Bansal
- Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
| |
Collapse
|
2
|
Bielas R, Kubiak T, Molcan M, Dobosz B, Rajnak M, Józefczak A. Biocompatible Hydrogel-Based Liquid Marbles with Magnetosomes. MATERIALS (BASEL, SWITZERLAND) 2023; 17:99. [PMID: 38203953 PMCID: PMC10779466 DOI: 10.3390/ma17010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Liquid marbles are widely known for their potential biomedical applications, especially due to their versatility and ease of preparation. In the present work, we prepared liquid marbles with various cores composed of water, agar-based hydrogels, magnetic fluids, or non-aqueous substances. As a coating material, we used biocompatible particles of plant origin, such as turmeric grains and Lycopodium pollen. Additionally, we provided marbles with magnetic properties by incorporating either magnetosomes or iron oxide nanoparticles as a powder or by injecting another magnetic fluid. Structures obtained in this way were stable and susceptible to manipulation by an external magnetic field. The properties of the magnetic components of our marbles were verified using electron paramagnetic resonance (EPR) spectroscopy and vibrating sample magnetometry (VSM). Our approach to encapsulation of active substances such as antibiotics within a protective hydrogel core opens up new perspectives for the delivery of hydrophobic payloads to the inherently hydrophilic biological environment. Additionally, hydrogel marbles enriched with magnetic materials showed promise as biocompatible heating agents under alternating magnetic fields. A significant innovation of our research was also the fabrication of composite structures in which the gel-like core was surrounded without mixing by a magnetic fluid covered on the outside by the particle shell. Our liquid marbles, especially those with a hydrogel core and magnetic content, due to the ease of preparation and favorable properties, have great potential for biomedical use. The fact that we were able to simultaneously produce, functionalize (by filling with predefined cargo), and manipulate (by means of an external magnetic field) several marbles also seems to be important from an application point of view.
Collapse
Affiliation(s)
- Rafał Bielas
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Tomasz Kubiak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Matus Molcan
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
| | - Bernadeta Dobosz
- Institute of Physics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Michal Rajnak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
| | - Arkadiusz Józefczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| |
Collapse
|
3
|
Feng Y, Yao G, Xu J, Wang L, Liu G. Effect of surface roughness on the solar evaporation of liquid marbles. J Colloid Interface Sci 2023; 629:644-653. [PMID: 36182756 DOI: 10.1016/j.jcis.2022.09.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023]
Abstract
HYPOTHESIS Nanostructured materials are widely used for solar energy harvesting and conversion due to their excellent photothermal properties. It is generally accepted that the better the light absorption ability, the better the photothermal conversion efficiency. EXPERIMENT A series of experiments in solar evaporation of liquid marbles (LMs) by coating the droplets with Fe3O4, Ni nanoparticles (NPs) and carbon nanotubes (CNTs) are conducted. FINDINGS Conversely, we found that the surface roughness of solar absorber plays a significant role in solar evaporation rather than the light absorption. The results disclose that the Fe3O4 NPs with the lowest absorptivity has the largest roughness on drop surface, while that of CNTs show the opposite properties. The evaporation dynamics of LMs are featured with dome or constant spherical collapse with different roughness. Such dynamic difference arises from the mechanical competition between the capillary force and interparticle interaction. Besides, the strong light-harvesting and near-field radiation enabled by the rough surfaces enhance the solar evaporation. The Fe3O4-LM shows the highest evaporation rate of 6.55 μg/s, which is 1.09 and 1.30 times larger than that of Ni-LM and CNT-LM, respectively. Numerical analysis reveals that the rough surface with stacking arrangement of NPs greatly enhances the light-induced electromagnetic field and heat concentration over the interface, leading to a plasmon-coupling boundary with high temperature for the fast evaporation. Uncovering these properties could be of much help for developments of heatable miniature evaporators or reactors and their counterparts, permitting a broad range of processes with precise temperature and kinetic control.
Collapse
Affiliation(s)
- Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, PR China
| | - Guansheng Yao
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, PR China
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, PR China
| | - Lin Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, PR China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
4
|
Lekshmi BS, Varanakkottu SN. Droplet-Impact Driven Formation of Ultralow Volume Liquid Marbles with Enhanced Mechanical Stability and Sensing Ability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11743-11752. [PMID: 36109337 DOI: 10.1021/acs.langmuir.2c01880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid marbles (LMs), droplets encapsulated with micro/nanoparticles, have attracted significant attention owing to their potential applications in various fields, ranging from microbioreactors to sensors. The volume of the LMs is a key parameter determining their mechanical stability and gas sensing ability. It is ideal to work with small volumes because of their better mechanical stability and gas sensing power compared to the larger LMs. Though many methods exist for producing LMs in the volume range above 2 μL, no reliable method exists to prepare fully coated submicroliter LMs with tunable volume. The situation becomes even more difficult when one attempts to produce tiny Janus Liquid Marbles (JLMs). This paper presents a simple, single-step, and efficient strategy for obtaining both the pristine LMs and JLMs in the volume range 200 nL to 18 μL. The core idea relies on the impact of a liquid drop on a particle bed at a Weber number of ∼55 to produce two daughter droplets and to convert these droplets into LMs/JLMs. The whole process takes only a few tens of milliseconds (∼50 ms). We have rendered the experimental schemes so that both the JLMs and pristine LMs can be produced in a single step, with control over their volume. The mechanical stability analysis of the prepared marbles indicates that 200 nL is 5 times more stable than 10 μL of LMs. The 0.72 μL LMs prepared with a 0.5 v/v % phenolphthalein indicator solution showed 3 times faster response time to ammonia gas sensing than 10 μL of LMs. The results presented in this work open up a new route for the rapid and reliable production of both multilayered LMs and JLMs with tunable volume in a wide range (200 nL to 18 μL).
Collapse
Affiliation(s)
- Bindhu Sunilkumar Lekshmi
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala India, 673601
| | - Subramanyan Namboodiri Varanakkottu
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala India, 673601
| |
Collapse
|
5
|
Sun Y, Zheng Y, Liu C, Zhang Y, Wen S, Song L, Zhao M. Liquid marbles, floating droplets: preparations, properties, operations and applications. RSC Adv 2022; 12:15296-15315. [PMID: 35693225 PMCID: PMC9118372 DOI: 10.1039/d2ra00735e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022] Open
Abstract
Liquid marbles (LMs) are non-wettable droplets formed with a coating of hydrophobic particles. They can move easily across either solid or liquid surfaces since the hydrophobic particles protect the internal liquid from contacting the substrate. In recent years, mainly due to their simple preparation, abundant materials, non-wetting/non-adhesive properties, elasticities and stabilities, LMs have been applied in many fields such as microfluidics, sensors and biological incubators. In this review, the recent advances in the preparation, physical properties and applications of liquid marbles, especially operations and floating abilities, are summarized. Moreover, the challenges to achieve uniformity, slow volatilization and stronger stability are pointed out. Various applications generated by LMs' structural characteristics are also expected.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yihan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Shiying Wen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| |
Collapse
|
6
|
Singha P, Nguyen NK, Zhang J, Nguyen NT, Ooi CH. Oscillating sessile liquid marble - A tool to assess effective surface tension. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Saji MS, Sahu C, Sukamanchi R, Kalamblayil Sankaranarayanan SK, Mathew D, Maniyeri SC. Stimulus Responsive Remotely Rupturable Adhesive Marbles Realized through a Hybrid Nanoparticle Concept. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8053-8063. [PMID: 34197121 DOI: 10.1021/acs.langmuir.0c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adhesive marbles, an innovative concept derived from liquid marble technology that is "remotely breakable on demand" by external stimuli, offer diverse application prospects. Therefore, a chemically linked superomniphobic hybrid perfluorinated carbon black-silica nanoparticle (PCBSN) was realized by functionalizing surface groups and used for encapsulating adhesives. PCBSN successfully encapsulated liquids and adhesives to form water (WM, contact angle 158°), epoxy (EM, contact angle 145°), and silicone (SM, contact angle 135°) marbles, regardless of the surface tension and polarity. Studies on the interface characteristics revealed that the work performed for marble formation maintained an inverse relationship with the surface energy of particles and the surface tension of encapsulated liquids. The marble formation energy was determined to be higher for EM (1.071 × 10-17 J) and lower for SM (0.946 × 10-17 J). Upon exposure to laser, marbles showed a rapid photothermal response, and the heat transferability on the surface of marbles followed the order SM > EM > WM. The marbles were remotely rupturable by regulating the applied laser power, with breaking time being tunable from <10 to 500 s. The photothermal efficiency (%) of marbles can be graded as good and falls in the range of 88.6 × 10-3 (EM) and 162.9 × 10-3 (SM) at 1.5 W laser power. The marbles possessed high mechanical integrity and repeated cyclability before breaking on the rolling impact test. These adhesive marbles formed from PCBSNs may represent attractive candidates for such applications as "bonding from a distance" through remote means.
Collapse
Affiliation(s)
| | - Chandan Sahu
- National Institute of Technology, Calicut-673601, Kerala, India
| | | | | | - Dona Mathew
- Polymers and Special Chemicals Division, VSSC, Thiruvananthapuram-695022, Kerala, India
| | | |
Collapse
|
8
|
Lobel BT, Thomas CA, Ireland PM, Wanless EJ, Webber GB. Liquid marbles, formation and locomotion using external fields and forces. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Harsha L, Bhuyan T, Maity S, Mondal PK, Ghosh SS, Bandyopadhyay D. Multifunctional liquid marbles to stabilize and transport reactive fluids. SOFT MATTER 2021; 17:5084-5095. [PMID: 33942823 DOI: 10.1039/d1sm00310k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The self-organized transport and delivery of reactive liquids without spillage or loss of activity have been among the most daunting challenges for a long time. In this direction, we employ the concept of forming "liquid marbles" (LMs) to encapsulate and transport reactive hydrogen peroxide (H2O2) coated with functional microparticles. For example, peroxide marbles coated with a toner ink display remote-controlled magnetotactic movement inside a fluidic medium, thus overcoming the weaknesses associated with use of the bare droplets. Interestingly, in such a scenario, the coating of the marbles could also be removed or reformed by bringing the magnet towards or away from the marble. In this way, this process could ensure an on-demand remotely guided coating on the peroxide droplet or its removal. The liquid marbles carrying peroxide solutions are found to preserve the activity of the peroxide and exhibit a low evaporation rate compared with the uncoated peroxide fuel. Interestingly, oil droplets floating on the water could be recovered by introducing the armoured LMs into water under magnetic guidance. Further, the functionalized marbles could be employed as suicide bags for the on-demand delivery of reactive materials in targeted locations. Preliminary research on the antibacterial activity of such liquid marbles has proven to be effective in bacterial killing, which may create new avenues for emerging antibacterial and antibiofilm applications. Finally, such functionalized LMs have been employed to investigate the effects of surface charge on attachment of recombinant Escherichia coli bacteria expressing green fluorescent protein and monitoring the real-time imaging of bacterial death attached to the marble surface.
Collapse
Affiliation(s)
- Lankipalli Harsha
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam - 781039, India
| | - Tamanna Bhuyan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam - 781039, India
| | - Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam - 781039, India
| | - Pranab K Mondal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam - 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam - 781039, India and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam - 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam - 781039, India and Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam - 781039, India.
| |
Collapse
|
10
|
Uda M, Kawashima H, Mayama H, Hirai T, Nakamura Y, Fujii S. Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4172-4182. [PMID: 33788574 DOI: 10.1021/acs.langmuir.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micrometer-sized hydrophobic polyaniline (PANI) grains were synthesized via an aqueous chemical oxidative polymerization protocol in the presence of dopant carrying perfluoroalkyl or alkyl groups. The critical surface tensions of the PANIs synthesized in the presence of heptadecafluorooctanesulfonic acid and sodium dodecyl sulfate dopants were lower than that of PANI synthesized in the absence of dopant, indicating the presence of hydrophobic dopant on the grain surfaces. The PANI grains could adsorb to air-liquid interfaces, and aqueous and nonaqueous liquid marbles (LMs) were successfully fabricated using liquids with surface tensions ranging between 72.8 and 42.9 mN/m. Thermography studies confirmed that the surface temperature of the LMs increased by near-infrared light irradiation thanks to the photothermal property of the PANI, and the maximum temperatures measured for nonaqueous LMs were higher than that measured for aqueous LM. We demonstrated that transport of the LMs on a planar water surface can be achieved via Marangoni flow generated by the near-infrared light-induced temperature gradient. Numerical analyses indicated that the LMs containing liquids with lower specific heat and thermal conductivity and higher density showed longer path length per one light irradiation shot and longer decay time. This is because generated heat could efficiently transfer from the LMs to the water surface and larger inertial force could work on the LMs. The LMs could also move over the solid substrate thanks to their near-spherical shapes. Furthermore, it was also demonstrated that the inner liquids of the LMs could be released on site by an external stimulus.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hisato Kawashima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
11
|
Ooi CH, Vadivelu R, Jin J, Sreejith KR, Singha P, Nguyen NK, Nguyen NT. Liquid marble-based digital microfluidics - fundamentals and applications. LAB ON A CHIP 2021; 21:1199-1216. [PMID: 33656019 DOI: 10.1039/d0lc01290d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.
Collapse
Affiliation(s)
- Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Przyczyna D, Suchecki M, Adamatzky A, Szaciłowski K. Towards Embedded Computation with Building Materials. MATERIALS 2021; 14:ma14071724. [PMID: 33807438 PMCID: PMC8038044 DOI: 10.3390/ma14071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023]
Abstract
We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for “reservoir of states” necessary for simple tuning of the readout layer. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. As part of dynamic analysis, several fractal dimensions and entropy parameters for the output signal were analyzed to explore the richness of the reservoir configuration space. In addition, to investigate the chaotic nature and self-affinity of the signal, Lyapunov exponents and Detrended Fluctuation Analysis exponents were calculated. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.
Collapse
Affiliation(s)
- Dawid Przyczyna
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
- Correspondence: (D.P.); (K.S.)
| | - Maciej Suchecki
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Andrew Adamatzky
- Department of Computer Science and Creative Technologies, Unconventional Computing Lab, University of the West of England, Bristol BS16 1QY, UK;
| | - Konrad Szaciłowski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
- Correspondence: (D.P.); (K.S.)
| |
Collapse
|
13
|
Lekshmi BS, Yadav AS, Ranganathan P, Varanakkottu SN. Simple and Continuous Fabrication of Janus Liquid Marbles with Tunable Particle Coverage Based on Controlled Droplet Impact. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15396-15402. [PMID: 33306396 DOI: 10.1021/acs.langmuir.0c02988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid marbles are gaining increased attention because of their added advantages such as low evaporation rates, less friction, and ease of manipulation over the pristine liquid drop. Their functionalities could be further enhanced by incorporating different types of particles (size, hydrophobicity, chemical properties, etc.), commonly called Janus liquid marbles (JLMs). However, their fabrication process remains a challenge, especially when we require continuous production. Here, we present a simple and fast approach for the fabrication of JLMs covered with nano- and microparticles in an additive-free environment based on the controlled impact of a water drop over the particle beds. The fabrication process involves collection of polyvinylidene difluoride particles (PVDF, particle type 1) by a water drop followed by its impact over an uncompressed bed of black toner particles (BTP, particle type 2). The whole process takes a time of approximately 30 ms only. The drop impact and the condition of the JLM formation were explained based on the Weber number (We) and maximum spread (βm) analysis. A theoretical model based on the energy balance analysis is performed to calculate the maximum spreading (βm), and the experimental and theoretical analyses are found to be in good agreement. Tunability in particle coverage is demonstrated by varying the droplet volume in the range of 5-15 μL. We further extend this strategy for the fast and continuous production of nearly identical JLMs, which could enhance the capabilities of open-surface microfluidic applications.
Collapse
Affiliation(s)
- Bindhu Sunilkumar Lekshmi
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode 673601, India
| | - Ajeet Singh Yadav
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode 673601, India
| | - Panneerselvam Ranganathan
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | | |
Collapse
|
14
|
Abstract
We report interfacial crystallization in the droplets of saline solutions placed on superhydrophobic surfaces and liquid marbles filled with the saline. Evaporation of saline droplets deposited on superhydrophobic surface resulted in the formation of cup-shaped millimeter-scaled residues. The formation of the cup-like deposit is reasonably explained within the framework of the theory of the coffee-stain effect, namely, the rate of heterogeneous crystallization along the contact line of the droplet is significantly higher than in the droplet bulk. Crystallization within evaporated saline marbles coated with lycopodium particles depends strongly on the evaporation rate. Rapidly evaporated saline marbles yielded dented shells built of a mixture of colloidal particles and NaCl crystals. We relate the formation of these shells to the interfacial crystallization promoted by hydrophobic particles coating the marbles, accompanied with the upward convection flows supplying the saline to the particles, serving as the centers of interfacial crystallization. Convective flows prevail over the diffusion mass transport for the saline marbles heated from below.
Collapse
|
15
|
Manufacture and properties of composite liquid marbles. J Colloid Interface Sci 2020; 575:35-41. [PMID: 32361045 DOI: 10.1016/j.jcis.2020.04.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Liquid marbles are non-stick droplets coated with colloidal usually hydrophobic particles. We suggest that "composite" liquid marbles, i.e. bi-liquid droplets, may be prepared with water droplets coated by a thin silicone oil layer containing hydrophobic, colloidal particles. EXPERIMENTS The process enabling manufacturing water marbles coated with silicone oil containing fumed fluorosilica particles is reported. The marbles remained stable when placed on solid and liquid supports. Bouncing and coalescence of the composite marbles was explored. FINDINGS Non-coalescence prolonged (ca. 20 min) jumping of composite marbles above a vibrating water bath was observed. Composite marbles withstand coalescence better than colloidal particle-stabilized liquid marbles. The effective surface tension of the composite marbles is markedly lower than that of water marbles coated with fumed fluorosilica particles. The coefficient of restitution of the composite marbles bouncing on a hydrophobic solid substrate is lower than that established for water marbles. This observation is related to the viscous dissipation occurring within the silicone layer making up the composite marbles.
Collapse
|
16
|
Roy PK, Binks BP, Fujii S, Shoval S, Bormashenko E. Composite Liquid Marbles as a Macroscopic Model System Representing Shedding of Enveloped Viruses. J Phys Chem Lett 2020; 11:4279-4285. [PMID: 32396360 DOI: 10.1021/acs.jpclett.0c01230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A model macroscopic system imitating the entry of viruses into living cells is suggested. The system represents the contact of a composite (core-shell) liquid marble with hydrophobic/hydrophilic particles. Composite liquid marbles are water droplets coated with silicone oil armored with nanometer-sized hydrophobic particles serving as an interfacial model of a living cell. Composite marbles absorbed hydrophilic polymer particles but prevented hydrophobic particles from entering their core. Swallowing of hydrophilic particles by composite marbles resembles the penetration of viruses into living cells. The interfacial mechanism of absorption is suggested.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- Chemical Engineering Department, Engineering Faculty, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Bernard P Binks
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Shraga Shoval
- Industrial Engineering and Management Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700 Ariel, Israel
| | - Edward Bormashenko
- Chemical Engineering Department, Engineering Faculty, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| |
Collapse
|
17
|
Draper TC, Phillips N, Weerasekera R, Mayne R, Fullarton C, de Lacy Costello BPJ, Adamatzky A. Contactless sensing of liquid marbles for detection, characterisation & computing. LAB ON A CHIP 2020; 20:136-146. [PMID: 31777892 DOI: 10.1039/c9lc01001g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid marbles (LMs) are of growing interest in many fields, including microfluidics, microreactors, sensors, and signal carriers. The generation of LMs is generally performed manually, although there has recently been a burst of publications involving 'automatic marble makers'. The characteristics of a LM is dependent on many things, including how it is generated, it is therefore important to be able to characterise LMs once made. Here is presented a novel contactless LM sensor, constructed on a PCB board with a comb-like structure of 36 interlacing electrical traces, 100 μm wide and 100 μm apart. This cheap, scalable, and easy to use sensor exploits the inherent impedance (comprised of the electrical resistance, capacitive reactance and inductive reactance) of different LMs. With it, parameters of a LM can be easily determined, without interfering with the LM. These parameters are (1) particle size of the LM coating, (2) the concentration of a NaCl solution used as the LM core, and (3) the volume of the LM. Additionally, due to the comb-like nature of the sensor, the accurate positioning (down to the inter-trace spacing) of the LM can be ascertained. The new sensor has been shown to work under both static and dynamic (mobile) conditions. The capacitance of a LM was recorded to be 0.10 pF, which compares well with the calculated value of 0.12 pF.
Collapse
Affiliation(s)
- Thomas C Draper
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK.
| | - Neil Phillips
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK.
| | - Roshan Weerasekera
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK. and Department of Engineering Design and Mathematics, Faculty of the Environment and Technology, University of the West of England, Bristol, BS161QY, UK
| | - Richard Mayne
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK. and Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS161QY, UK
| | - Claire Fullarton
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK.
| | - Ben P J de Lacy Costello
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK. and Institute of Biosensing Technology, Centre for Research in Biosciences, University of the West of England, Bristol, BS161QY, UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS161QY, UK.
| |
Collapse
|
18
|
Lin X, Ma W, Chen L, Huang L, Wu H, Takahara A. Influence of water evaporation/absorption on the stability of glycerol-water marbles. RSC Adv 2019; 9:34465-34471. [PMID: 35529992 PMCID: PMC9073916 DOI: 10.1039/c9ra05728e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022] Open
Abstract
The porous shell structure of liquid marbles allows liquid vapor to enter in/out of the liquid marbles, leading to the deformation/collapse of liquid marbles, which limits their application as miniature reactors for long-term chemical reactions. In this study, to prevent volatilization and maintain long-term stability, stable liquid marbles were fabricated by encapsulating glycerol/water droplets using superhydrophobic cellulose nanocrystals. The influence of water evaporation and absorption on the stability of aqueous glycerol marbles at different relative humidities (RHs) was investigated. At the same RH, the evaporation/absorption rates of the liquid marbles decreased on increasing the glycerol concentration. For the liquid marbles with the same glycerol volume concentration, the evaporation rates decreased with the increase in RH. The liquid marbles exhibited higher evaporation/absorption resistance compared with pure naked liquid droplets.
Collapse
Affiliation(s)
- Xinxing Lin
- Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China +86-591-83715175 +86-18649784585
| | - Wei Ma
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
- ERATO Takahara Soft Interface Project, Japan Science and Technology Agency (JST) 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Lihui Chen
- Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China +86-591-83715175 +86-18649784585
| | - Liulian Huang
- Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China +86-591-83715175 +86-18649784585
| | - Hui Wu
- Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China +86-591-83715175 +86-18649784585
| | - Atsushi Takahara
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
- ERATO Takahara Soft Interface Project, Japan Science and Technology Agency (JST) 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
19
|
Zhang Y, Fu X, Guo W, Deng Y, Binks BP, Shum HC. Electrocoalescence of liquid marbles driven by embedded electrodes for triggering bioreactions. LAB ON A CHIP 2019; 19:3526-3534. [PMID: 31544191 DOI: 10.1039/c9lc00722a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid marbles need to be controlled precisely to benefit applications, for instance, as microreactors on digital microfluidic platforms for chemical and biological assays. In this work, a strategy is introduced to coalesce liquid marbles via electrostatics, where two liquid marbles in contact can coalesce when a sufficiently high voltage is applied to embedded electrodes. With the understanding of the mechanism of coalescence through relating the electric stress and the restoring capillary pressure at the contact interface, this method coalesces liquid marbles efficiently. When compared with the existing electrocoalescence method, our approach does not require immersion of electrodes to trigger coalescence. We demonstrate this to exchange the medium for the culture of cell spheroids and to measure the cell metabolic activity through a CCK-8 assay. The manipulation of liquid marbles driven by electrostatics creates new opportunities to conduct chemical reactions and biomedical assays in these novel microreactors.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong.
| | | | | | | | | | | |
Collapse
|
20
|
Mayne R, Draper TC, Phillips N, Whiting JGH, Weerasekera R, Fullarton C, de Lacy Costello BPJ, Adamatzky A. Neuromorphic Liquid Marbles with Aqueous Carbon Nanotube Cores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13182-13188. [PMID: 31525934 PMCID: PMC7007261 DOI: 10.1021/acs.langmuir.9b02552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Indexed: 05/08/2023]
Abstract
Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses toward implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances in the utilization of liquid marbles (LMs, microliter quantities of fluid coated in hydrophobic powder) for the creation of unconventional computing devices, we describe the development of LMs with neuromorphic properties through the use of copper coatings and 1.0 mg mL-1 carbon nanotube (CNT)-containing fluid cores. Experimentation was performed through sandwiching the LMs between two cup-style electrodes and stimulating them with repeated dc pulses at 3.0 V. Our results demonstrate that "entrainment" of CNT-filled copper LMs via periodic pulses can cause their electrical resistance to rapidly switch between high to low resistance profiles upon inverting the polarity of stimulation: the reduction in resistance between high and low profiles was approximately 88% after two rounds of entrainment. This effect was found to be reversible through reversion to the original stimulus polarity and was strengthened by repeated experimentation, as evidenced by a mean reduction in time to switching onset of 43%. These effects were not replicated in nanotube solutions not bound inside LMs. Our electrical characterization also reveals that nanotube-filled LMs exhibit pinched loop hysteresis IV profiles consistent with the description of memristors. We conclude by discussing the applications of this technology to the development of unconventional computing devices and the study of emergent characteristics in biological neural tissue.
Collapse
Affiliation(s)
- Richard Mayne
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Thomas C. Draper
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Neil Phillips
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - James G. H. Whiting
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Roshan Weerasekera
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Claire Fullarton
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Ben P. J. de Lacy Costello
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Andrew Adamatzky
- Department
of Applied Sciences, Faculty of Health and Applied Sciences, Unconventional Computing
Group, Faculty of the Environment and Technology, Department of Engineering Design
and Mathematics, Faculty of the Environment and Technology, and Health Technology
Hub, University of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| |
Collapse
|
21
|
Sreejith KR, Gorgannezhad L, Jin J, Ooi CH, Stratton H, Dao DV, Nguyen NT. Liquid marbles as biochemical reactors for the polymerase chain reaction. LAB ON A CHIP 2019; 19:3220-3227. [PMID: 31464317 DOI: 10.1039/c9lc00676a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The polymerase chain reaction (PCR) is a popular and well-established DNA amplification technique. Technological and engineering advancements in the field of microfluidics have fuelled the progress of polymerase chain reaction (PCR) technology in the last three decades. Advances in microfluidics-based PCR technology have significantly reduced the sample volume and thermal cycling time. Further advances led to novel and accurate techniques such as the digital PCR. However, contamination of PCR samples, lack of reusability of the microfluidic PCR platforms, complexity in instrumentation and operation remain as some of the significant drawbacks of conventional microfluidic PCR platforms. Liquid marbles, the recently emerging microfluidic platform, could potentially resolve these drawbacks. This paper reports the first liquid marble based polymerase chain reaction. We demonstrated an experimental setup for the liquid-marble based PCR with a humidity-controlled chamber and an embedded thermal cycler. A concentrated salt solution was used to control the humidity of the PCR chamber which in turn reduces the evaporation rate of the liquid marble. The successful PCR of microbial source tracking markers for faecal contamination was achieved with the system, indicating potential application in water quality monitoring.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia. and School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, 4111 Queensland, Australia
| | - Jing Jin
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, 4111 Queensland, Australia
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| |
Collapse
|
22
|
Bormashenko E. Moses effect: physics and applications. Adv Colloid Interface Sci 2019; 269:1-6. [PMID: 31026760 DOI: 10.1016/j.cis.2019.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 11/17/2022]
Abstract
Deformation of the surface of a diamagnetic liquid by a magnetic field is called the "Moses Effect". Magnetic fields of ca 0.5 T give rise to near surface dips with a depth of dozens of microns. The physics and applications of direct and inverse Moses effects are reviewed, including trapping and self-assembly of particles. Experimental techniques enabling visualization of the effects are surveyed. The impact of a magnetic field on micro- and macroscopic properties of liquids is addressed. The influence of surface tension on the shape of the near-surface dip formed in a diamagnetic liquid by magnetic field is reported. Floating of diamagnetic bodies driven by the Moses effect is treated. The "magnetic memory of water" in relation to the Moses Effect is discussed. The dynamics of self-healing of near-surface dips due to the Moses Effect is considered.
Collapse
Affiliation(s)
- Edward Bormashenko
- Ariel University, Engineering Faculty, Chemical Engineering, Biotechnology and Materials Department, P.O.B. 3, 407000 Ariel, Israel.
| |
Collapse
|
23
|
Draper TC, Fullarton C, Mayne R, Phillips N, Canciani GE, de Lacy Costello BPJ, Adamatzky A. Mapping outcomes of liquid marble collisions. SOFT MATTER 2019; 15:3541-3551. [PMID: 30945723 DOI: 10.1039/c9sm00328b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Liquid marbles (LMs) have many promising roles in the ongoing development of microfluidics, microreactors, bioreactors, and unconventional computing. In many of these applications, the coalescence of two LMs is either required or actively discouraged, therefore it is important to study liquid marble collisions and establish parameters which enable the desired collision outcome. Recent reports on LM coalescence have focused on either two mobile LMs colliding, or an accelerating LM hitting a sessile LM with a backstop. A further possible scenario is the impact of a mobile LM against a non-supported static LM. This paper investigates such a collision, using high-speed videography for single-frame analysis. Multiple collisions were undertaken whilst varying the modified Weber number (We*) and offset ratios (X*). Parameter ranges of 1.0 < We* < 1.4 and 0.0 < X* < 0.1, resulted in a coalescence rate of approximately 50%. Whereas, parameter ranges X* > 0.25, and We* < 0.95 or We* > 1.55 resulted in 100% non-coalescence. Additionally, observations of LMs moving above a threshold velocity of 0.6 m s-1 have revealed a new and unusual deformation. Comparisons of the outcome of collisions whilst varying both the LM volume and the powder grain size have also been made, revealing a strong link. The results of this work provide a deeper understanding of LM coalescence, allowing improved control when designing future collision experiments.
Collapse
Affiliation(s)
- Thomas C Draper
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ooi CH, Jin J, Sreejith KR, Nguyen AV, Evans GM, Nguyen NT. Manipulation of a floating liquid marble using dielectrophoresis. LAB ON A CHIP 2018; 18:3770-3779. [PMID: 30426126 DOI: 10.1039/c8lc01057a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A liquid marble is a microliter-sized droplet coated with hydrophobic powder. The porous coating prevents the liquid content from being in direct physical contact with its surroundings, making the liquid marble perfectly non-wetting. On the one hand, the non-wetting ability allows the liquid marble to float and move across a liquid surface with little resistance. On the other hand, the porosity enables gas exchange between the liquid marble and its surroundings. These properties allow the liquid marble to serve as a bioreactor platform for important applications such as cell culture. Liquid marbles floating on a free liquid surface prevent evaporation due to the high humidity near the liquid surface. Moving a floating liquid marble allows for stirring and mixing inside the liquid marble. This paper reports a novel technique for manipulating a floating liquid marble using dielectrophoresis. A relatively simple setup can move liquid marbles of various sizes across the water surface at high speeds. We also present an analytical model to model and accurately predict the motion of the floating liquid marble. The technique reported here potentially allows for high-throughput and efficient handling of floating liquid marbles as a digital microfluidics platform.
Collapse
Affiliation(s)
- Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Celestini F, Bormashenko E. Propulsion of liquid marbles: A tool to measure their effective surface tension and viscosity. J Colloid Interface Sci 2018; 532:32-36. [DOI: 10.1016/j.jcis.2018.07.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
|
26
|
Abstract
A mechanical flip-flop actuator has been developed that allows for the facile re-routing and distribution of liquid marbles (LMs) in digital microfluidic devices. Shaped loosely like a triangle, the actuating switch pivots from one bistable position to another, being actuated by the very low mass and momentum of a LM rolling under gravity (~4 × 10−6 kg ms−1). The actuator was laser-cut from cast acrylic, held on a PTFE coated pivot, and used a PTFE washer. Due to the rocking motion of the switch, sequential LMs are distributed along different channels, allowing for sequential LMs to traverse parallel paths. This distributing effect can be easily cascaded, for example to evenly divide sequential LMs down four different paths. This lightweight, cheap and versatile actuator has been demonstrated in the design and construction of a LM-operated mechanical multiplication device — establishing its effectiveness. The actuator can be operated solely by gravity, giving it potential use in point-of-care devices in low resource areas.
Collapse
|
27
|
Frenkel M, Dombrovsky L, Multanen V, Danchuk V, Legchenkova I, Shoval S, Bormashenko Y, Binks BP, Bormashenko E. Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid. J Phys Chem B 2018; 122:7936-7942. [DOI: 10.1021/acs.jpcb.8b06136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mark Frenkel
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Leonid Dombrovsky
- University of Tyumen, Tyumen, 625003, Russia
- Joint Institute for High Temperatures, Moscow, 111116, Russia
| | - Victor Multanen
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
- Nanoprobe Lab for Bio- & Nanotechnology & Biomimetics, Ohio, College of Engineering, The Ohio State University, Columbus, Ohio 43210-1142, United States
| | - Viktor Danchuk
- Department of Physics, Exact Sciences Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Irina Legchenkova
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Shraga Shoval
- Industrial Engineering and Management, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Yelena Bormashenko
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Bernard P. Binks
- School of Mathematics and Physical Sciences, University of Hull, Hull, HU6 7RX, U.K
| | - Edward Bormashenko
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| |
Collapse
|