1
|
Sokolov MR, Tumbinskiy KA, Varlamova EA, Averin AA, Shkolin AV, Kalinina MA. Noncovalent Self-Assembly of Single-Layer MoS 2 Nanosheets and Zinc Porphyrin into Stable SURMOF Nanohybrids with Multimodal Photocatalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49299-49311. [PMID: 37843052 DOI: 10.1021/acsami.3c11698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A noncovalent integration of nanosheets of molybdenum disulfide (MoS2) and the zinc porphyrin complex Zn(II) 5,10,15,20-tetrakis(4-carboxyphenyl)porphine (ZnTCPP) through coordination bonding with metal clusters of zinc acetate (Zn[OAc]2) was applied for synthesis of stable hybrid nanomaterial avoiding surface prefunctionalization. The X-ray powder diffraction in combination with the BET nitrogen adsorption method confirms formation of a ZnTCPP-based surface-attached metal-organic framework (SURMOF) with micropores of 1.63 nm on the MoS2 nanosheets. Fluorescence spectroscopy confirmed Forster resonance energy transfer (FRET) between MoS2 and ZnTCPP without contact quenching. Fluorescent trapping with terephthalic acid for hydroxyl radicals and Sensor Green for singlet oxygen was applied for studying the pathways of photodegradation of model organic pollutant 1,5-dihydroxynaphthalene (DHN) in the presence of SURMOF/MoS2. Visible light initiates sensitization through the excitation of ZnTCPP generating singlet oxygen, whereas UV-light promotes either aerobic FRET-mediated "Z scheme" or anaerobic "Type II heterojunction" mechanisms. Owing to its multimodal photochemistry, the SURMOF/MoS2 hybrid showed comparatively high photocatalytic activity in UV-assisted degradation of DHN (keffUV = 4.0 × 10-2 min-1) as well as the antibacterial activity confirmed by E. coli survival test under visible light. Noncovalent self-assembly utilizing coordination bonding in SURMOFs as supramolecular adhesive to avoid surface premodification provides a basis for new types of multicomponent nanosystems with switchable functionalities by combining different 2D materials and chromophores in one hybrid structure.
Collapse
Affiliation(s)
- Maxim R Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 b. 4 Leninsky Prospect, Moscow 119071, Russia
| | - Konstantin A Tumbinskiy
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 b. 4 Leninsky Prospect, Moscow 119071, Russia
- Faculty of Materials Science, Moscow State University, 1-73 Leninskiye Gory, GSP-1, Moscow 119991, Russia
| | - Ekaterina A Varlamova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 b. 4 Leninsky Prospect, Moscow 119071, Russia
| | - Alexey A Averin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 b. 4 Leninsky Prospect, Moscow 119071, Russia
| | - Andrey V Shkolin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 b. 4 Leninsky Prospect, Moscow 119071, Russia
| | - Maria A Kalinina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 b. 4 Leninsky Prospect, Moscow 119071, Russia
| |
Collapse
|
2
|
Zvyagina AI, Alexandrov AE, Averin AA, Senchikhin IN, Sokolov MR, Ezhov AA, Tameev AR, Kalinina MA. One-Step Interfacial Integration of Graphene Oxide and Organic Chromophores into Multicomponent Nanohybrids with Photoelectric Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15145-15155. [PMID: 36454956 DOI: 10.1021/acs.langmuir.2c02155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A one-step protocol for interfacial self-assembly of graphene oxide (GO), glutamine-substituted perylene diimide (PDI-glu), 10,12-pentacosadiynoic acid (PCDA), and zinc acetate into three- and four-component hybrid nanofilms through hydrogen and coordination bonding was developed. The hybrids deposited onto solid supports were studied after polymerization of PCDA by UV-vis absorption, fluorescence, and Raman spectroscopies, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results of spectroscopic studies suggest that the hybrids assembled through H-bonds can maintain the light-induced Förster energy transfer from the PDI-glu chromophore to the conjugated polymer and then to GO leading to fluorescence quenching. In the hybrids assembled through coordination bonding with zinc clusters, the energy transfer proceeds from PDI-glu to the PDA polymer, whereas the transfer from PDA to GO is quenched completely. Another important characteristic of these ultrathin hybrids is their stability with respect to photobleaching of chromophores due to the acceptor properties of GO. The as-assembled hybrid nanofilms were integrated with conventional photovoltaic planar architectures to study their photoelectric properties. The zinc-containing hybrids integrated with a hole transport layer exhibited photovoltaic properties. The cell with the integrated four-component hybrid comprising both PDI-glu and PDA showed a photocurrent/dark current ratio almost an order higher than that of the three-component hybrid assembled with PDA only. The supramolecular method based on the interfacial self-assembly can be extended to a wide variety of organic chromophores and polymerizable surfactants for integrating them into multicomponent functional GO-based nanohybrids with targeted properties for organic electronics.
Collapse
Affiliation(s)
- Alexandra I Zvyagina
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| | - Alexey E Alexandrov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| | - Alexey A Averin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| | - Ivan N Senchikhin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| | - Maxim R Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| | - Alexander A Ezhov
- Faculty of Physics, M. V. Lomonosov Moscow State University, 1-2 Leninskiye Gory, GSP-1, Moscow119991, Russia
| | - Alexey R Tameev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| | - Maria A Kalinina
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky Prospect, 31, bldg. 4, Moscow119071, Russia
| |
Collapse
|
3
|
Nugmanova AG, Kalinina MA. Supramolecular Self-Assembly of Hybrid Colloidal Systems. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Gorbunova YG, Enakieva YY, Volostnykh MV, Sinelshchikova AA, Abdulaeva IA, Birin KP, Tsivadze AY. Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Nugmanova AG, Kalinina MA. Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
7
|
Mao B, Cortezon‐Tamarit F, Ge H, Kuganathan N, Mirabello V, Palomares FJ, Kociok‐Köhn G, Botchway SW, Calatayud DG, Pascu SI. Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks. ChemistryOpen 2019; 8:1383-1398. [PMID: 31844605 PMCID: PMC6892451 DOI: 10.1002/open.201900310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional fluorescent graphene frameworks with controlled porous morphologies are of significant importance for practical applications reliant on controlled structural and electronic properties, such as organic electronics and photochemistry. Here we report a synthetically accessible approach concerning directed aromatic stacking interactions to give rise to new fluorogenic 3D frameworks with tuneable porosities achieved through molecular variations. The binding interactions between the graphene-like domains present in the in situ-formed reduced graphene oxide (rGO) with functional porphyrin molecules lead to new hybrids via an unprecedented solvothermal reaction. Functional free-base porphyrins featuring perfluorinated aryl groups or hexyl chains at their meso- and β-positions were employed in turn to act as directing entities for the assembly of new graphene-based and foam-like frameworks and of their corresponding coronene-based hybrids. Investigations in the dispersed phase and in thin-film by XPS, SEM and FLIM shed light onto the nature of the aromatic stacking within functional rGO frameworks (denoted rGOFs) which was then modelled semi-empirically and by DFT calculations. The pore sizes of the new emerging reduced graphene oxide hybrids are tuneable at the molecular level and mediated by the bonding forces with the functional porphyrins acting as the "molecular glue". Single crystal X-ray crystallography described the stacking of a perfluorinated porphyrin with coronene, which can be employed as a molecular model for understanding the local aromatic stacking order and charge transfer interactions within these rGOFs for the first time. This opens up a new route to controllable 3D framework morphologies and pore size from the Ångstrom to the micrometre scale. Theoretical modelling showed that the porosity of these materials is mainly due to the controlled inter-planar distance between the rGO, coronene or graphene sheets. The host-guest chemistry involves the porphyrins acting as guests held through π-π stacking, as demonstrated by XPS. The objective of this study is also to shed light into the fundamental localised electronic and energy transfer properties in these new molecularly engineered porous and fluorogenic architectures, aiming in turn to understand how functional porphyrins may exert stacking control over the notoriously disordered local structure present in porous reduced graphene oxide fragments. By tuning the porosity and the distance between the graphene sheets using aromatic stacking with porphyrins, it is also possible to tune the electronic structure of the final nanohybrid material, as indicated by FLIM experiments on thin films. Such nanohybrids with highly controlled pores dimensions and morphologies open the way to new design and assembly of storage devices and applications incorporating π-conjugated molecules and materials and their π-stacks may be relevant towards selective separation membranes, water purification and biosensing applications.
Collapse
Affiliation(s)
- Boyang Mao
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
- National Graphene InstituteUniversity of ManchesterBooth Street EastManchesterM13 9PLUnited Kingdom
- Current address: Department of Engineering, Cambridge Graphen CentreUniversity of Cambridge
| | | | - Haobo Ge
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Navaratnarajah Kuganathan
- Faculty of Engineering, Environment and ComputingCoventry UniversityPriory StreetCoventryCV1 5FBUnited Kingdom
| | | | - Francisco J. Palomares
- Department of Nanostructures and SurfacesInstituto de Ciencia de Materiales de Madrid – CSICSor Juana Inés de la Cruz 3, Campus de CantoblancoMadrid28049Spain
| | | | - Stanley W. Botchway
- Central Laser Facility, Rutherford Appleton Laboratory, ResearchComplex at Harwell, STFCDidcotOX11 0QXUnited Kingdom
| | - David G. Calatayud
- Department of ElectroceramicsInstituto de Cerámica y Vidrio – CSICKelsen 5, Campus de CantoblancoMadrid28049Spain
| | - Sofia I. Pascu
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
8
|
Kutenina AP, Zvyagina AI, Raitman OA, Enakieva YY, Kalinina MA. Layer-by-Layer Assembly of SAM-supported Porphyrin-based Metal Organic Frameworks for Molecular Recognition. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19040070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Quan GC, Denis M, Abeykoon B, Tommasino JB, Jeanneau E, Journet C, Devic T, Fateeva A. Supramolecular assemblies of phenolic metalloporphyrins: Structures and electrochemical studies. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461950007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reactivity of two phenolic porphyrins bearing respectively catechol and gallol-derived meso substituents (5,10,15,20-tetrakis(3,4-dihydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(3,4,5-trihydroxyphenyl)porphyrin) with trivalent metallic ions (Fe, Mn, In) was studied. Six supramolecular compounds were obtained and structurally characterized by single crystal X-ray diffraction. In each compound, the supramolecular assembly was based on the axial coordination of a phenolate function to the metallic ion lying in the porphyrinic core. A great diversity of supramolecular architectures was accessible through such simple arrangements, and objects ranging from dimers to one-dimensional polymers were isolated. Some of these assemblies were further investigated in solution by mass spectrometry and by UV-vis absorption spectroscopy. For the iron-based materials, the redox behavior was studied in solution through cyclic voltammetry experiments in inert conditions and under air.
Collapse
Affiliation(s)
- Gia Co Quan
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Morgane Denis
- Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322 Nantes Cedex 3, France
| | - Brian Abeykoon
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Jean-Bernard Tommasino
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Erwann Jeanneau
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Catherine Journet
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Thomas Devic
- Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322 Nantes Cedex 3, France
| | - Alexandra Fateeva
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, F-69622 Villeurbanne, France
| |
Collapse
|
10
|
Reshetnikova AK, Zvyagina AI, Enakieva YY, Arslanov VV, Kalinina MA. Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template Monolayers of Graphene Oxide. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x1806011x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|