1
|
Ray R, Pal S, Das S, Jana NR. Direct Membrane Penetration and Cytosolic Delivery of Nanoparticles via Electrostatically Bound Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15819-15831. [PMID: 38517139 DOI: 10.1021/acsami.3c18750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nanoparticles usually enter cells through energy-dependent endocytosis that involves their cytosolic entry via biomembrane-coated endosomes. In contrast, direct translocation of nanoparticles with straight access to cytosol/subcellular components without any membrane coating is limited to very selective conditions/approaches. Here we show that nanoparticles can switch from energy-dependent endocytosis to energy-independent direct membrane penetration once an amphiphile is electrostatically bound to their surface. Compared to endocytotic uptake, this direct cell translocation is faster and nanoparticles are distributed inside the cytosol without any lysosomal trafficking. We found that this direct cell translocation option is sensitive to the charges of both the nanoparticles and the amphiphile. We propose that an electrostatically bound amphiphile induces temporary opening of the cell membrane, which allows direct cell translocation of nanoparticles. This approach can be adapted for efficient subcellular targeting of nanoparticles and nanoparticle-based drug delivery application, bypassing the endosomal trapping and lysosomal degradation.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Pal
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Soumi Das
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
2
|
Chaudhury A, Debnath K, Jana NR, Basu JK. Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding. NANOSCALE 2024; 16:856-867. [PMID: 38099655 DOI: 10.1039/d3nr05378d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cellular membranes are constantly bombarded with biomolecules and nanoscale particles, and cell functionality depends on the fraction of the bound/internalized entities. Understanding the biophysical parameters underlying this complex process is very difficult in live cells. Model membranes provide an ideal platform to obtain insight into the minimal and essential parameters involved in determining cell membrane-nanoparticle (NP) interaction. Here we report spontaneous binding and unbinding of semiconductor NPs, carrying different net charges and interacting with model biomembranes, using in situ neutron reflectivity (NR) and fluorescence microscopy studies. We observe a critical concentration of NPs above which they spontaneously unbind along with lipids from lipid monolayer membranes, leaving behind fewer bound NPs. This critical concentration varies depending on whether the NPs carry a net charge or are neutral, and is also governed by the extent of NP crowding for a fixed NP charge. The observations suggest a subtle interplay between electrostatics, membrane fluidity, and NP crowding effects, which eventually determines the adsorbed concentration for unbinding transition. Our study provides valuable microscopic insight into the parameters that could determine the biophysical process underlying NP uptake and ejection by cells which, in turn, can be utilized for their potential applications in bioimaging and drug delivery.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Yang Y, Li Z, Dong F, Lv J, Han B, Sun Y, Lu H, Lei Z, Ma H. Hypochlorite Detection by Fluorescent Sensors Bearing Long Alkyl Chains: The Role of Chain Length in Sensing Properties. Chempluschem 2022; 87:e202200307. [PMID: 36416253 DOI: 10.1002/cplu.202200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Three pyridinium derivatives bearing alkyl chains of different lengths (C1, C8, and C18) that show aggregation-enhanced emission were synthesized. These compounds can be used to detect ClO- ion as the reaction releases the fluorescent core with an increase in emission intensity and change in absorption wavelength. The lowest detection limit of TPA-Pyr-18C was 6.04 μM. The length of the alkyl chain and resulting lipophilicity allowed the targeting of different subcellular structures. TPA-Pyr-18C could be used for staining yolk lipids in zebrafish.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yuqing Sun
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Huiming Lu
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
4
|
Ray R, Ghosh S, Jana NR. Phosphate-Dependent Colloidal Stability Controls Nonendocytic Cell Delivery of Arginine-Terminated Nanoparticles. J Phys Chem B 2021; 125:9186-9196. [PMID: 34374554 DOI: 10.1021/acs.jpcb.1c05931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although arginine-rich polymers and peptides are extensively used as delivery carriers for drugs/proteins/nanoparticles, their cell delivery mechanism is not clearly understood. Recent studies show that arginine-terminated nanoparticles can enter into a cell via a nonendocytic approach that involves direct membrane penetration. However, poor colloidal stability of arginine-terminated nanoparticles under physiological conditions restricts their application potential. Here, we show that the nonendocytic cell delivery of arginine-terminated nanoparticles is controlled by their colloidal stability in the presence of phosphates. We have designed arginine-terminated quantum dots (QDs) of 10-15 nm hydrodynamic size, which enter into the cell via a nonendocytic approach, provided that they are colloidal and dispersed during cellular uptake. We have demonstrated that arginine-terminated QDs rapidly precipitate in the presence of monophosphates or polyphosphates, and polyphosphates have a stronger effect than monophosphates. Introducing polyethylene glycol at the QD surface can improve the colloidal stability against phosphates. Control experiments show that amine/ammonium-terminated cationic QDs of similar sizes do not have such a type of phosphate-dependent precipitation issue. We propose that arginine-terminated colloidal nanoparticles have a unique advantage over amine/ammonium-terminated nanoparticles as they can bind with the cell membrane phosphate via guanidinium-phosphate salt bridging. Bulk phosphate provides reversibility in this binding interaction so that nonendocytic cell uptake occurs via charge compensation of cationic nanoparticles without membrane damage. The developed surface chemistry approach and the proposed mechanisms can be adapted to other nanoparticles for efficient cell delivery and for designing delivery carriers.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
5
|
Debnath K, Pal S, Jana NR. Chemically Designed Nanoscale Materials for Controlling Cellular Processes. Acc Chem Res 2021; 54:2916-2927. [PMID: 34232016 DOI: 10.1021/acs.accounts.1c00215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles are widely used in various biomedical applications as drug delivery carriers, imaging probes, single-molecule tracking/detection probes, artificial chaperones for inhibiting protein aggregation, and photodynamic therapy materials. One key parameter of these applications is the ability of the nanoparticles to enter into the cell cytoplasm, target different subcellular compartments, and control intracellular processes. This is particularly the case because nanoparticles are designed to interact with subcellular components for the required biomedical performance. However, cells are protected from their surroundings by the cell membrane, which exerts strict control over entry of foreign materials. Thus, nanoparticles need to be designed appropriately so that they can readily cross the cell membrane, target subcellular compartments, and control intracellular processes.In the past few decades there have been great advancements in understanding the principles of cellular uptake of foreign materials. In particular, it has been shown that internalization of foreign materials (small molecules, macromolecules, nanoparticles) is size-dependent: endocytotic uptake of materials requires sizes greater than 10 nm, and materials with sizes of 10-100 nm usually enter into cells by energy-dependent endocytosis via biomembrane-coated vesicles. Direct access to the cytosol is limited to very specific conditions, and endosomal escape of material appears to be the most practical approach for intracellular processing.In this Account, we describe how cellular uptake and intracellular processing of nanoscale materials can be controlled by appropriate design of size and surface chemistry. We first describe the cell membrane structure and principles of cellular uptake of foreign materials followed by their subcellular trafficking. Next, we discuss the designed surface chemistry of a 5-50 nm particle that offers preferential lipid-raft/caveolae-mediated endocytosis over clathrin-mediated endocytosis with minimum endosomal/lysosomal trafficking or energy-independent direct cell membrane translocation (without endocytosis) followed by cytosolic delivery without endosomal/lysosomal trafficking. In particular, we emphasize that the zwitterionic-lipophilic surface property of a nanoparticle offers preferential interaction with the lipid raft region of the cell membrane followed by lipid raft uptake, whereas a lower number of affinity biomolecules (<25) on the nanoparticle surface offers caveolae/lipid-raft uptake, while an arginine/guanidinium-terminated surface along with a size of <10 nm offers direct cell membrane translocation. Finally, we discuss how nanoprobes can be designed by adapting these surface chemistry and size preference principles so that they can readily enter into the cell, label different subcellular compartments, and control intracellular processes such as trafficking kinetics, exocytosis, autophagy, amyloid aggregation, and clearance of toxic amyloid aggregates. The Account ends with a Conclusions and Outlook where we discuss a vision for the development of subcellular targeting nanodrugs and imaging nanoprobes by adapting to these surface chemistry principles.
Collapse
Affiliation(s)
- Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Suman Pal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
6
|
Wu H, Jia P, Zou Y, Jiang J. Cascade targeting tumor mitochondria with CuS nanoparticles for enhanced photothermal therapy in the second near-infrared window. Biomater Sci 2021; 9:5209-5217. [PMID: 34160487 DOI: 10.1039/d1bm00589h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photothermal therapy, assisted by local heat generation using photothermal nanoparticles (NPs), is an emerging strategy to treat tumors noninvasively. To improve treatment outcomes and to alleviate potential side effects on normal tissue cells, utilizing the optically transparent second near-infrared (NIR-II) window and actively targeting tumors are critical. Considering that mitochondria are heat sensitive and play an important role in the up-regulation of metabolic activity in tumor cells, herein we report a cascade targeting scheme that enables active photothermal ablation of tumor mitochondria. First, NIR-II absorbing CuS NPs were surface modified with the mitochondria targeting moiety (3-carboxypropyl) triphenylphosphonium bromide (TPP) and then shielded with CD44 targeting hyaluronic acid, which will only expose TPP upon reaching the tumor sites. This allowed over 90% CuS NP enrichment at tumor mitochondria, and as a result, significantly improved tumor cell photothermal ablation was observed at the cellular level. An in vivo study demonstrated enhanced tumor uptake and improved tumor growth suppression by using these cascade targeting CuS NPs as NIR-II photothermal agents.
Collapse
Affiliation(s)
- Haiyan Wu
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | |
Collapse
|
7
|
De La Encarnacion Bermudez C, Haddadi E, Rampazzo E, Petrizza L, Prodi L, Genovese D. Core-Shell Pluronic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4802-4809. [PMID: 33851534 PMCID: PMC8154881 DOI: 10.1021/acs.langmuir.0c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nanostructured systems constitute versatile carriers with multiple functions engineered in a nanometric space. Yet, such multimodality often requires adapting the chemistry of the nanostructure to the properties of the hosted functional molecules. Here, we show the preparation of core-shell Pluronic-organosilica "PluOS" nanoparticles with the use of a library of organosilane precursors. The precursors are obtained via a fast and quantitative click reaction, starting from cost-effective reagents such as diamines and an isocyanate silane derivative, and they condensate in building blocks characterized by a balance between hydrophobic and H-bond-rich domains. As nanoscopic probes for local polarity, oxygen permeability, and solvating properties, we use, respectively, solvatochromic, phosphorescent, and excimer-forming dyes covalently linked to the organosilica matrix during synthesis. The results obtained here clearly show that the use of these organosilane precursors allows for finely tuning polarity, oxygen permeability, and solvating properties of the resulting organosilica core, expanding the toolbox for precise engineering of the particle properties.
Collapse
Affiliation(s)
| | - Elahe Haddadi
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- Department
of Chemistry, College of Sciences, Shiraz
University, Shiraz 71454, Iran
| | - Enrico Rampazzo
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Petrizza
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
8
|
Lin FC, Xie Y, Deng T, Zink JI. Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. J Am Chem Soc 2021; 143:6025-6036. [PMID: 33857372 DOI: 10.1021/jacs.0c10098] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive multifunctional mesoporous silica nanoparticles (MSNs) have been studied intensively during the past decade. A large variety of mesopore capping systems have been designed, initially to show that it could be done and later for biomedical applications such as drug delivery and imaging. On-command release of cargo molecules such as drugs from the pores can be activated by a variety of stimuli. This paper focuses on three noninvasive, biologically usable external stimuli: magnetism, ultrasound, and light. We survey the variety of MSNs that have been and are being used and assess capping designs and the advantages and drawbacks of the nanoplatforms' responses to the various stimuli. We discuss important recent advances, their basic mechanisms, and their requirements for stimulation. On the basis of our survey, we identify fundamental challenges and suggest future directions for research that will unleash the full potential of these fascinating nanosystems for clinical applications.
Collapse
Affiliation(s)
- Fang-Chu Lin
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Yijun Xie
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Tian Deng
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Chaudhury A, Debnath K, Bu W, Jana NR, Basu JK. Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. SOFT MATTER 2021; 17:1963-1974. [PMID: 33427839 DOI: 10.1039/d0sm01945c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing of nanoparticles (NPs) for biomedical applications or mitigating their cytotoxic effects requires microscopic understanding of their interactions with cell membranes. Such insight is best obtained by studying model biomembranes which, however, need to replicate actual cell membranes, especially their compositional heterogeneity and charge. In this work we have investigated the role of lipid charge density and packing of phase separated Langmuir monolayers in the penetration and phase specificity of charged quantum dot (QD) binding. Using an ordered and anionic charged lipid in combination with uncharged but variable stiffness lipids we demonstrate how the subtle interplay of zwitterionic lipid packing and anionic lipid charge density can affect cationic nanoparticle penetration and phase specific binding. Under identical subphase pH, the membrane with higher anionic charge density displays higher NP penetration. We also observe coalescence of charged lipid rafts floating amidst a more fluidic zwitterionic lipid matrix due to the phase specificity of QD binding. Our results suggest effective strategies which can be used to design NPs for diverse biomedical applications as well as to devise remedial actions against their harmful cytotoxic effects especially against respiratory diseases.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Wei Bu
- NSF's ChemMatCARS, University of Chicago, Chicago, IL 60637, USA
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Dalal C, Saini D, Garg AK, Sonkar SK. Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS APPLIED BIO MATERIALS 2021; 4:252-266. [PMID: 35014282 DOI: 10.1021/acsabm.0c01192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Concentrically arranged multilayered fullerenes exhibiting onion-like morphology are popularly known as carbon nano-onion (CNO) and are useful in bioimaging application. On the basis of the origin of the fluorescence, the CNO-based nanoprobes are classified into type I and type II. The type I CNO-based nanoprobe needs a secondary moiety such as organic dyes or an amine functionalization at its surface to induce the fluorescence. On the other hand, the emission in type II does not originate from such an external surface passivating agent. The CNO-based system not only shows structural similarity to the well-known multiwalled carbon nanotube but is also a bit more advantageous because of its low cytotoxicity. These features enable their prolonged use in the biological system for imaging purposes. In particular, we have covered the aspects of synthesis, surface functionalization, the origin of fluorescence, and biocompatibility. In addition, recent developments directed toward in vitro and in vivo imaging studies by utilizing CNO-based nanoprobes are summarized here.
Collapse
Affiliation(s)
- Chumki Dalal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
11
|
Pal S, Jana NR. Nonendocytic Cell Delivery of Quantum Dot Using Arginine-Terminated Gold Nanoparticles. J Phys Chem B 2020; 124:11827-11834. [DOI: 10.1021/acs.jpcb.0c08992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Suman Pal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
12
|
Panja P, Debnath K, Jana NR, Jana NR. Surface Chemistry- and Intracellular Trafficking-Dependent Autophagy Induction by Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:5974-5983. [DOI: 10.1021/acsabm.0c00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasanta Panja
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R. Jana
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
13
|
Panja P, Jana NR. Lipid-Raft-Mediated Direct Cytosolic Delivery of Polymer-Coated Soft Nanoparticles. J Phys Chem B 2020; 124:5323-5333. [DOI: 10.1021/acs.jpcb.0c03444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prasanta Panja
- School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Kumar A, Ahmad A, Vyawahare A, Khan R. Membrane Trafficking and Subcellular Drug Targeting Pathways. Front Pharmacol 2020; 11:629. [PMID: 32536862 PMCID: PMC7267071 DOI: 10.3389/fphar.2020.00629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022] Open
Abstract
The movement of micro and macro molecules into and within a cell significantly governs several of their pharmacokinetic and pharmacodynamic parameters, thus regulating the cellular response to exogenous and endogenous stimuli. Trafficking of various pharmacological agents and other bioactive molecules throughout and within the cell is necessary for the fidelity of the cells but has been poorly investigated. Novel strategies against cancer and microbial infections need a deeper understanding of membrane as well as subcellular trafficking pathways and essentially regulate several aspects of the initiation and spread of anti-microbial and anti-cancer drug resistance. Furthermore, in order to avail the maximum possible bioavailability and therapeutic efficacy and to restrict the unwanted toxicity of pharmacological bioactives, these sometimes need to be functionalized with targeting ligands to regulate the subcellular trafficking and to enhance the localization. In the recent past the scenario drug targeting has primarily focused on targeting tissue components and cell vicinities, however, it is the membranous and subcellular trafficking system that directs the molecules to plausible locations. The effectiveness of the delivery platforms largely depends on their physicochemical nature, intracellular barriers, and biodistribution of the drugs, pharmacokinetics and pharmacodynamic paradigms. Most subcellular organelles possess some peculiar characteristics by which membranous and subcellular targeting can be manipulated, such as negative transmembrane potential in mitochondria, intraluminal delta pH in a lysosome, and many others. Many specialized methods, which positively promote the subcellular targeting and restrict the off-targeting of the bioactive molecules, exist. Recent advancements in designing the carrier molecules enable the handling of membrane trafficking to facilitate the delivery of active compounds to subcellular localizations. This review aims to cover membrane trafficking pathways which promote the delivery of the active molecule in to the subcellular locations, the associated pathways of the subcellular drug delivery system, and the role of the carrier system in drug delivery techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
15
|
Panja P, Jana NR. Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus. J Phys Chem Lett 2020; 11:2363-2368. [PMID: 32130014 DOI: 10.1021/acs.jpclett.0c00176] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although colloidal nanoparticles are known to enter into cells via endocytosis, the direct membrane permeation of nanoparticles is rarely reported, and the underlying mechanism of direct membrane permeation is largely unsolved. However, a direct membrane-penetrating nanoparticle has great advantage as a delivery carrier that offers high delivery efficiency, faster delivery kinetics, and minimal lysosomal degradation. Here we show that arginine-terminated Au nanoparticles of <10 nm size enter via energy-independent direct membrane penetration, but as the size increases, the nanoparticles switch to energy-dependent endocytotic uptake. As a delivery carrier, <10 nm Au nanoparticles directly transport an electrostatically bound protein into the cytosol within a minute and allow direct access of the protein to subcellular compartments. This direct delivery approach has been used for efficient nuclear targeting of proteins and can be adapted for direct cytosolic delivery or subcellular targeting applications with high efficiency.
Collapse
Affiliation(s)
- Prasanta Panja
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
16
|
Ali H, Ghosh S, Jana NR. Fluorescent carbon dots as intracellular imaging probes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1617. [DOI: 10.1002/wnan.1617] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Haydar Ali
- School of Materials Science Indian Association for the Cultivation of Science Kolkata India
| | - Santu Ghosh
- School of Materials Science Indian Association for the Cultivation of Science Kolkata India
| | - Nikhil R. Jana
- School of Materials Science Indian Association for the Cultivation of Science Kolkata India
| |
Collapse
|
17
|
Debnath K, Jana NR, Jana NR. Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS APPLIED BIO MATERIALS 2019; 2:5298-5305. [DOI: 10.1021/acsabm.9b00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Koushik Debnath
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R. Jana
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
18
|
Zakharova LY, Kaupova GI, Gabdrakhmanov DR, Gaynanova GA, Ermakova EA, Mukhitov AR, Galkina IV, Cheresiz SV, Pokrovsky AG, Skvortsova PV, Gogolev YV, Zuev YF. Alkyl triphenylphosphonium surfactants as nucleic acid carriers: complexation efficacy toward DNA decamers, interaction with lipid bilayers and cytotoxicity studies. Phys Chem Chem Phys 2019; 21:16706-16717. [PMID: 31321392 DOI: 10.1039/c9cp02384d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, for the first time the complexation ability of a homological series of triphenylphosphonium surfactants (TPPB-n) toward DNA decamers has been explored. Formation of lipoplexes was confirmed by alternative techniques, including dynamic light scattering, indicating the occurrence of nanosized complexes (ca. 100-150 nm), and monitoring the charge neutralization of nucleotide phosphate groups and the fluorescence quenching of dye-intercalator ethidium bromide. The complexation efficacy of TPPB-surfactants toward an oligonucleotide (ONu) is compared with that of reference cationic surfactants. Strong effects of the alkyl chain length and the structure of the head group on the surfactant/ONu interaction are revealed, which probably occur via different mechanisms, with electrostatic and hydrophobic forces or intercalation imbedding involved. Phosphonium surfactants are shown to be capable of disordering lipid bilayers, which is supported by a decrease in the temperature of the main phase transition, Tm. This effect enhances with an increase in the alkyl chain length, indicating the integration of TPPB-n with lipid membranes. This markedly differs from the behavior of typical cationic surfactant cetyltrimethylammonium bromide, which induces an increase in the Tm value. It was demonstrated that the cytotoxicity of TPPB-n in terms of the MTT-test on a human cell line 293T nonmonotonically changes within the homological series, with the highest cytotoxicity exhibited by the dodecyl and tetradecyl homologs.
Collapse
Affiliation(s)
- Lucia Ya Zakharova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia.
| | - Guzalia I Kaupova
- Scientific and Technological Center of PAO "Niznekamskneftekhim", Sobolekovskaya Street 23, Nizhnekamsk 423574, Russia
| | - Dinar R Gabdrakhmanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia.
| | - Gulnara A Gaynanova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia.
| | - Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Alexander R Mukhitov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Irina V Galkina
- Kazan (Volga Region) Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Sergey V Cheresiz
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Polina V Skvortsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| |
Collapse
|
19
|
Guan Q, Fu DD, Li YA, Kong XM, Wei ZY, Li WY, Zhang SJ, Dong YB. BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. iScience 2019; 14:180-198. [PMID: 30981114 PMCID: PMC6461589 DOI: 10.1016/j.isci.2019.03.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Covalent organic frameworks (COFs), an emerging class of organic porous materials, have attracted intense attention due to their versatile applications. However, the deliberate fabrication of COF-based nanomaterials for nanomedical application remains challenging due to difficulty in their size- and structure-controlled synthesis and poor aqueous dispersibility. Herein, we report two boron-dipyrromethene (BODIPY)-decorated nanoscale COFs (NCOFs), which were prepared by the Schiff-base condensation of the free end -CHO (bonding defects in COFs) on the established imine-based NCOFs with the amino-substituted organic photosensitizer BODIPY via "bonding defects functionalization" approach. Thus BODIPY has been successfully nanocrystallized via the NCOF platform, and can be used for photodynamic therapy (PDT) to treat tumors. These NCOF-based PDT agents featured nanometer size (∼110 nm), low dark toxicity, and high phototoxicity as evidenced by in vitro and in vivo experiments. Moreover, the "bonding defects functionalization" approach might open up new avenues for the fabrication of additional COF-based platforms for biomedical treatment.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Dan-Dan Fu
- Qianfoshan Hospital of Shandong Province, Jinan 250014, P. R. China; Binzhou Medical University (Yantai Campus), Yantai 264003, P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiang-Mei Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhi-Yuan Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Shao-Jun Zhang
- Qianfoshan Hospital of Shandong Province, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|