1
|
Arrigoni A, Squeo BM, Pasini M. Unlocking Germanium Potential: Stabilization Strategies Through Wet Chemical Functionalization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6285. [PMID: 39769886 PMCID: PMC11678511 DOI: 10.3390/ma17246285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Germanium (Ge) has long been recognized for its superior carrier mobility and narrower band gap compared to silicon, making it a promising candidate in microelectronics and optoelectronics. The recent demonstration of good biocompatibility, combined with the ability to selectively functionalize its surface, establishes the way for its use in biosensing and bioimaging. This review provides a comprehensive analysis of the most recent advancements in the wet chemical functionalization of germanium surfaces. Wet chemical methods, including Grignard reactions, hydrogermylation, self-assembled monolayers (SAMs) formation, and arylation, are discussed in terms of their stability, surface coverage, and potential for preventing reoxidation, one of the main limits for Ge practical use. Special emphasis is placed on the characterization techniques that have advanced our understanding of these functionalized surfaces, which are crucial in the immobilization of molecules/biomolecules for different technological applications. This review emphasizes the dual functionality of surface passivation techniques, demonstrating that, in addition to stabilizing and protecting the active material, surface functionalization can impart new functional properties for germanium-based biosensors and semiconductor devices.
Collapse
Affiliation(s)
| | | | - Mariacecilia Pasini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC—CNR, Via Corti, 20132 Milan, Italy; (A.A.); (B.M.S.)
| |
Collapse
|
2
|
Cao Y, Yan N, Wang M, Qi D, Zhang J, Chen X, Qin R, Xiao F, Zhao G, Liu Y, Cai X, Zhao K, Liu SF, Feng J. Designed Additive to Regulated Crystallization for High Performance Perovskite Solar Cell. Angew Chem Int Ed Engl 2024; 63:e202404401. [PMID: 38729917 DOI: 10.1002/anie.202404401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
It is a crucial role for enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) to prepare high-quality perovskite films, which can be achieved by delaying the crystallization of perovskite film. Hence, we designed difluoroacetic anhydride (DFA) as an additive to regulating crystallization process thus reducing defect formation during perovskite film formation. It was found DFA reacts with DMSO by forming two molecules, difluoroacetate thioether ester (DTE) and difluoroacetic acid (DA). The strong bonding DTE⋅PbI2 and DA⋅PbI2 retard perovskite crystallization process for high-quality film formation, which was monitored through in situ UV/Vis and PL tests. By using DFA additives, we prepared perovskite films with high-quality and low defects. Finally, a champion PCE of 25.28 % was achieved with excellent environmental stability, which retained 95.75 % of the initial PCE after 1152 h at 25 °C under 25 % RH.
Collapse
Affiliation(s)
- Yang Cao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Nan Yan
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mingzi Wang
- School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Danyang Qi
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jiafan Zhang
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xin Chen
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Ru Qin
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Fengwei Xiao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Guangtao Zhao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yucheng Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xuediao Cai
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Kui Zhao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Shengzhong Frank Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangshan Feng
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Materials Science and Engineering; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| |
Collapse
|
3
|
Retout M, Gosselin B, Jokerst JV, Jabin I, Bruylants G. A fluoride-induced aggregation test to quickly assess the efficiency of ligand exchange procedures from citrate capped AuNPs. Colloids Surf A Physicochem Eng Asp 2023; 660:130801. [PMID: 36779205 PMCID: PMC9912280 DOI: 10.1016/j.colsurfa.2022.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypothesis Citrate capped gold nanoparticles (AuNPs-citrate) are the starting material for most of the academic and industrial applications using gold nanoparticles. AuNPs-citrate must usually be functionalized with organic (bio)molecules, through a ligand exchange process, to become suitable for the envisaged application. The evaluation of the efficiency of the ligand-exchange process with a simple and convenient procedure is challenging. Experiments Fluoride was used to evaluate the efficiency of a ligand exchange process from AuNPs-citrate with five standard types of ligands. The relationship between the aggregation level of the AuNPs exposed to fluoride and the amount of residual citrate ligands at the surface of the AuNPs was studied. The fluoride-induced aggregation process was characterized with various techniques such as TEM, UV-Vis, ATR-FTIR or MANTA and then used to quickly identify the optimal conditions for the functionalization of AuNPs-citrate with a new ligand, i.e. a PEGylated calixarene-tetradiazonium salt (X4-(PEG)4). Findings It was observed that the fluoride-induced aggregation of AuNPs is proportional to the efficiency of the ligands exchange. We believe that these results could benefit to everyone engineering AuNPs for advanced applications, as the fluoride-aggregation of AuNPs can be used as a general and versatile quality test to verify the coating density of organic (bio)molecules on AuNPs.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Bryan Gosselin
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Jesse V. Jokerst
- Department of NanoEngineering and Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
4
|
Miclotte MJ, Varlas S, Reynolds CD, Rashid B, Chapman E, O’Reilly RK. Thermoresponsive Block Copolymer Core-Shell Nanoparticles with Tunable Flow Behavior in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54182-54193. [PMID: 36401811 PMCID: PMC9743085 DOI: 10.1021/acsami.2c15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the purpose of investigating new polymeric materials as potential flow modifiers for their future application in enhanced oil recovery (EOR), a series of amphiphilic poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) [P(DEGMA-co-OEGMA)]-based core-shell nanoparticles were prepared by aqueous reversible addition-fragmentation chain transfer-mediated polymerization-induced self-assembly. The developed nano-objects were shown to be thermoresponsive, demonstrating a reversible lower-critical solution temperature (LCST)-type phase transition with increasing solution temperature. Characterization of their thermoresponsive nature by variable-temperature UV-vis and dynamic light scattering analyses revealed that these particles reversibly aggregate when heated above their LCST and that the critical transition temperature could be accurately tuned by simply altering the molar ratio of core-forming monomers. Sandpack experiments were conducted to evaluate their pore-blocking performance at low flow rates in a porous medium heated at temperatures above their LCST. This analysis revealed that particles aggregated in the sandpack column and caused pore blockage with a significant reduction in the porous medium permeability. The developed aggregates and the increased pressure generated by the blockage were found to remain stable under the injection of brine and were observed to rapidly dissipate upon reducing the temperature below the LCST of each formulation. Further investigation by double-column sandpack analysis showed that the blockage was able to reform when re-heated and tracked the thermal front. Moreover, the rate of blockage formation was observed to be slower when the LCST of the injected particles was higher. Our investigation is expected to pave the way for the design of "smart" and versatile polymer technologies for EOR applications in future studies.
Collapse
Affiliation(s)
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Carl D. Reynolds
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
5
|
ATR-FTIR Biosensors for Antibody Detection and Analysis. Int J Mol Sci 2022; 23:ijms231911895. [PMID: 36233197 PMCID: PMC9570191 DOI: 10.3390/ijms231911895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Quality control of drug products is of paramount importance in the pharmaceutical world. It ensures product safety, efficiency, and consistency. In the case of complex biomolecules such as therapeutic proteins, small variations in bioprocess parameters can induce substantial variations in terms of structure, impacting the drug product quality. Conditions for obtaining highly reproducible grafting of 11-mercaptoundecanoic acid were determined. On that basis, we developed an easy-to-use, cost effective, and timesaving biosensor based on ATR-FTIR spectroscopy able to detect immunoglobulins during their production. A germanium crystal, used as an internal reflection element (IRE) for FTIR spectroscopy, was covalently coated with immunoglobulin-binding proteins. This thereby functionalized surface could bind only immunoglobulins present in complex media such as culture media or biopharmaceutical products. The potential subsequent analysis of their structure by ATR-FTIR spectroscopy makes this biosensor a powerful tool to monitor the production of biotherapeutics and assess important critical quality attributes (CQAs) such as high-order structure and aggregation level.
Collapse
|
6
|
Quaglio D, Polli F, Del Plato C, Cianfoni G, Tortora C, Mazzei F, Botta B, Calcaterra A, Ghirga F. Calixarene: a versatile scaffold for the development of highly sensitive biosensors. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.2011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Polli
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Gabriele Cianfoni
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| |
Collapse
|
7
|
Retout M, Jabin I, Bruylants G. Synthesis of Ultrastable and Bioconjugable Ag, Au, and Bimetallic Ag_Au Nanoparticles Coated with Calix[4]arenes. ACS OMEGA 2021; 6:19675-19684. [PMID: 34368555 PMCID: PMC8340414 DOI: 10.1021/acsomega.1c02327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 05/02/2023]
Abstract
Compared to gold nanoparticles, silver nanoparticles are largely underexploited for the development of plasmonic nanosensors. This is mainly due to their easy chemical degradation through oxidation, poor colloidal stability, and usually broad size distribution after synthesis, which leads to broad localized surface plasmon resonance bands. Coatings based on polymers such as poly(ethylene glycol) (PEG) or poly(vinylpyrrolidone) (PVP) and plant extracts have been used for the stabilization of AgNPs; however, these thick coatings are not suitable for sensing applications as they isolate the metallic core. The examples of stable AgNPs coated with a thin organic layer remain scarce in comparison to their gold counterparts. In this work, we present a convenient one-step synthesis strategy that allows to obtain unique gold, silver, and bimetallic NPs that combine all of the properties required for biosensing applications. The NPs are stabilized by a tunable calix[4]arene-based monolayer obtained through the reduction of calix[4]arene-tetradiazonium salts. These multidentate ligands are of particular interest as (i) they provide excellent colloidal and chemical stabilities to the particles thanks to their anchoring to the surface via multiple chemical bonds, (ii) they allow the subsequent (bio)conjugation of (bio)molecules under mild conditions, and (iii) they allow a control over the composition of mixed coating layers. Ag and Ag_Au nanoparticles of a high stability are obtained, opening perspectives for development of numerous biosensing applications.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
8
|
Liu N, Ma Y, Han R, Lv S, Wang P, Luo X. Antifouling biosensors for reliable protein quantification in serum based on designed all-in-one branched peptides. Chem Commun (Camb) 2021; 57:777-780. [PMID: 33355558 DOI: 10.1039/d0cc07220f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antifouling electrochemical biosensors based on designed all-in-one branched peptides that combine anchoring, doping, antifouling and recognizing functions were constructed to support sensitive and reliable protein quantification in complex serum samples.
Collapse
Affiliation(s)
- Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yihui Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Lv
- Department of Neurology, Qingdao Central Hospital, Qingdao 266042, China
| | - Peipei Wang
- Department of Neurology, Qingdao Central Hospital, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
9
|
Retout M, Blond P, Jabin I, Bruylants G. Ultrastable PEGylated Calixarene-Coated Gold Nanoparticles with a Tunable Bioconjugation Density for Biosensing Applications. Bioconjug Chem 2021; 32:290-300. [PMID: 33439626 DOI: 10.1021/acs.bioconjchem.0c00669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many in vivo and in vitro applications using gold nanoparticles (AuNPs) require (i) their PEGylation, as it increases their stability and prevents nonspecific protein adsorption, and (ii) their conjugation to biomolecules, that provides them with specific recognition properties. Currently, the functionalization of AuNPs is based on thiol chemistry that suffers from two major drawbacks: (i) the Au-S bond is labile and confers limited chemical robustness to the organic layer, and (ii) control over the bioconjugation density is highly challenging. We report here a novel functionalization strategy based on calix[4]arene-tetradiazonium platforms for the coating of AuNPs with a robust PEG layer and their controlled bioconjugation. AuNPs were first modified with a functional calix[4]arene-diazonium salt bearing three PEG chains ended by a methoxy group and one by a carboxyl group. The resulting particles showed excellent chemical and colloidal stabilities, compared to similar systems obtained via a classical thiol chemistry, and could even be dispersed in human serum without degrading or aggregating. In addition to that, the carboxyl groups protruding from the PEG layer allowed their conjugation via amide bond formation with amine-containing biomolecules such as peptides. The control of the bioconjugation was obtained by grafting mixed layers of functional and nonfunctional PEGylated calix[4]arenes, that allowed varying the number of functional groups carried by the AuNPs and subsequently their bioconjugation capacity while preserving their dense protective PEG shell. Finally, we used these nanomaterials, modified with peptide aptamers, for the in vitro biosensing of a cancer biomarker, Mdm2.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Pascale Blond
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Seddon WD, Alfhaid L, Dunbar ADF, Geoghegan M, Williams NH. Adhesion of Grafted-to Polyelectrolyte Brushes Functionalized with Calix[4]resorcinarene and Deposited as a Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13843-13852. [PMID: 33172276 DOI: 10.1021/acs.langmuir.0c02236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte adhesives, either poly[2-(dimethylamino)ethyl methacrylate] or poly(methacrylic acid), functionalized with a surface-active calix[4]resorcinarene were grafted onto silicon wafers. Adhesion studies on these grafted-to brushes using polyelectrolyte hydrogels of opposite charge showed that it is the calix[4]resorcinarene, rather than adsorption of polyelectrolyte monomers, that adheres the brush to the silicon substrate. The adhesion measured was similar to that measured using polymers grafted from the surface, and was stronger than a control layer of poly(vinyl acetate) under the same test conditions. The limiting factor was determined to be adhesive failure at the hydrogel-brush interface, rather than the brush-silicon interface. Therefore, the adhesion has not been adversely affected by changing from a grafted-from to a grafted-to brush, demonstrating the possibility of a one-pot approach to creating switchable adhesives.
Collapse
Affiliation(s)
- William D Seddon
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Latifah Alfhaid
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Alan D F Dunbar
- Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Nicholas H Williams
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
11
|
Blond P, Bevernaegie R, Troian-Gautier L, Lagrost C, Hubert J, Reniers F, Raussens V, Jabin I. Ready-to-Use Germanium Surfaces for the Development of FTIR-Based Biosensors for Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12068-12076. [PMID: 33007158 DOI: 10.1021/acs.langmuir.0c02681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Germanium is particularly suitable for the design of FTIR-based biosensors for proteins. The grafting of stable and thin organic layers on germanium surfaces remains, however, challenging. To tackle this problem, we developed a calix[4]arene-tetradiazonium salt decorated with four oligo(ethylene glycol) chains and a terminal reactive carboxyl group. This versatile molecular platform was covalently grafted on germanium surfaces to yield robust ready-to-use surfaces for biosensing applications. The grafted calixarene monolayer prevents nonspecific adsorption of proteins while allowing bioconjugation with biomolecules such as bovine serum albumin (BSA) or biotin. It is shown that the native form of the investigated proteins was maintained upon immobilization. As a proof of concept, the resulting calix[4]arene-based germanium biosensors were used through a combination of ATR-FTIR spectroscopy and fluorescence microscopy for the selective detection of streptavidin from a complex medium. This study opens real possibilities for the development of sensitive and selective FTIR-based biosensors devoted to the detection of proteins.
Collapse
Affiliation(s)
- Pascale Blond
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
- Laboratory for the Structure and Function of Biological Membranes, Centre for Structural Biology and Bioinformatics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, CP206/02, B-1050 Brussels, Belgium
| | - Robin Bevernaegie
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | | | - Julie Hubert
- Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Boulevard du Triomphe, CP 255, B-1050 Brussels, Belgium
| | - François Reniers
- Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Boulevard du Triomphe, CP 255, B-1050 Brussels, Belgium
| | - Vincent Raussens
- Laboratory for the Structure and Function of Biological Membranes, Centre for Structural Biology and Bioinformatics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, CP206/02, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| |
Collapse
|
12
|
Mattiuzzi A, Lenne Q, Carvalho Padilha J, Troian-Gautier L, Leroux YR, Jabin I, Lagrost C. Strategies for the Formation of Monolayers From Diazonium Salts: Unconventional Grafting Media, Unconventional Building Blocks. Front Chem 2020; 8:559. [PMID: 32766206 PMCID: PMC7381217 DOI: 10.3389/fchem.2020.00559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Pioneered by J. Pinson and coll. in 1990s, the reductive grafting of aryldiazonium salts has become a powerful method for surface functionalization. Highly robust interfaces result from this surface attachment, resistant to heat, chemical degradation and ultrasonication. Importantly, this approach can be applied to many materials, ranging from conducting, semi-conducting, oxides to insulating substrates. In addition, either massive, flat surfaces or nanomaterials can be functionalized. The method is easy to process and fast. The grafting process involves the formation of highly reactive aryl radicals able to attack the substrate. However, the generated radicals can also react with already-grafted aryl species, leading to the formation of loosely-packed polyaryl multilayer films, typically of 10-15 nm thick. It is thus highly challenging to control the vertical extension of the deposited layer and to form well-ordered monolayers from aryldiazonium salts. In this mini review, we briefly describe the different strategies that have been developed to prepare well-ordered monolayers. We especially focus on two strategies successfully used in our laboratories, namely the use of unconventional solvents, i.e., room temperature ionic liquids (RTILs), as grafting media and the use of calixarene macrocycles by taking benefit of their pre-organized structure. These strategies give large possibilities for the structuring of interfaces with the widest choice of materials and highlight the potential of aryldiazonium grafting as a competitive alternative to self-assembled monolayers (SAMs) of alkyl thiols.
Collapse
Affiliation(s)
| | | | - Janine Carvalho Padilha
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
13
|
Mattiuzzi A, Troian-Gautier L, Mertens J, Reniers F, Bergamini JF, Lenne Q, Lagrost C, Jabin I. Robust hydrophobic gold, glass and polypropylene surfaces obtained through a nanometric covalently bound organic layer. RSC Adv 2020; 10:13553-13561. [PMID: 35492995 PMCID: PMC9051540 DOI: 10.1039/d0ra01011a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/25/2020] [Indexed: 01/26/2023] Open
Abstract
The (electro)chemical grafting of a polyfluorinated calix[4]arene on gold, polypropylene and glass is reported. The modified surfaces were characterized by ellipsometry, atomic force microscopy (AFM), and by X-ray photoelectron spectroscopy (XPS). A nanometric, robust and uniform monolayer of covalently surface-bound calix[4]arenes was obtained on the three different materials. For all surfaces, contact angles higher than 110° were recorded, highlighting the hydrophobic character given by this ∼2 nm thin organic monolayer. Remarkably, the contact angle values remained unchanged after 18 months under a laboratory atmosphere. The results presented herein thus present an attractive and sustainable strategy for bringing hydrophobic properties to the interface of a wide range of materials. The grafting of a polyfluorinated calix[4]arene-tetradiazonium derivative on various surfaces led to the formation of very robust and stable hydrophobic monolayers.![]()
Collapse
Affiliation(s)
- Alice Mattiuzzi
- X4C 128 Rue du Chêne Bonnet 6110 Montigny-le-Tilleul Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) CP 160/06, 50 Avenue F. D. Roosevelt 1050 Brussels Belgium
| | - Jérémy Mertens
- Chemistry of Surfaces, Interfaces and Nanomaterials - ChemSIN, Université libre de Bruxelles (ULB) CP 255, Campus de la Plaine, Boulevard du Triomphe 1050 Brussels Belgium
| | - François Reniers
- Chemistry of Surfaces, Interfaces and Nanomaterials - ChemSIN, Université libre de Bruxelles (ULB) CP 255, Campus de la Plaine, Boulevard du Triomphe 1050 Brussels Belgium
| | | | - Quentin Lenne
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) CP 160/06, 50 Avenue F. D. Roosevelt 1050 Brussels Belgium
| |
Collapse
|
14
|
Farquhar AK, Smith SR, Dyck CV, McCreery RL. Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10211-10223. [PMID: 32040296 DOI: 10.1021/acsami.9b17420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An inexpensive, solution phase modification of flat carbon electrodes by electrochemical reactions of a 1,8-diaminonaphthalene derivative results in a 120- to 700-fold increase in capacity by formation of a 15-22 nm thick organic film. Modification of high surface area carbon electrodes with the same protocol resulted in a 12- to 82-fold increase in capacity. The modification layer contains 9-15% nitrogen present as -NH- redox centers that result in a large Faradaic component involving one H+ ion for each electron. The electrodes showed no capacity loss after prolonged cycling in 0.1 M H2SO4 and exhibited significantly higher charge density than similar reported electrodes based on graphene and polyaniline. Investigation of the deposition conditions revealed that N-doped oligomeric ribbons are formed both by diazonium ion reduction and diaminonaphthalene oxidation, and the 1,8 isomer is essential for the large capacity increases. The capacity increase has at least three contributions: increased microscopic surface area from ribbon formation, Faradaic reactions of nitrogen-containing redox centers, and changes in ribbon conductivity resulting from polaron formation. An aqueous fabrication process was developed which both increased capacity and improved stability and was amenable to industrial production. The high charge density, low-cost fabrication, and <25 nm thickness of the diaminonaphthalene-derived films should prove attractive toward practical application on both flat surfaces and in high surface area carbon electrodes.
Collapse
Affiliation(s)
- Anna K Farquhar
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Scott R Smith
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Colin Van Dyck
- Department of Physics, University of Mons, 20, place du Parc, 7000 Mons, Belgium
| | - Richard L McCreery
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Troian-Gautier L, Mattiuzzi A, Reinaud O, Lagrost C, Jabin I. Use of calixarenes bearing diazonium groups for the development of robust monolayers with unique tailored properties. Org Biomol Chem 2020; 18:3624-3637. [DOI: 10.1039/d0ob00070a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calixarene-based diazonium salts can be easily synthesized in a few steps. This review surveys recent examples that illustrate the key advantages of these highly reactive molecular platforms for surface modification.
Collapse
Affiliation(s)
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
- X4C
| | - Olivia Reinaud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université de Paris
- 75006 Paris
- France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| |
Collapse
|
16
|
Soulignac C, Cornelio B, Brégier F, Le Derf F, Brière J, Clamens T, Lesouhaitier O, Estour F, Vieillard J. Heterogeneous-phase Sonogashira cross-coupling reaction on COC surface for the grafting of biomolecules – Application to isatin. Colloids Surf B Biointerfaces 2019; 181:639-647. [DOI: 10.1016/j.colsurfb.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/28/2023]
|
17
|
Malytskyi V, Troian-Gautier L, Mattiuzzi A, Lambotte S, Cornelio B, Lagrost C, Jabin I. Synthesis of a Calix[4]arene-Monodiazonium Salt for Surface Modification. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Volodymyr Malytskyi
- Laboratoire de Chimie Organique; Université Libre de Bruxelles (ULB); avenue F. D. Roosevelt 50, CP160/06, B -1050 Brussels Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique; Université Libre de Bruxelles (ULB); avenue F. D. Roosevelt 50, CP160/06, B -1050 Brussels Belgium
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique; Université Libre de Bruxelles (ULB); avenue F. D. Roosevelt 50, CP160/06, B -1050 Brussels Belgium
- X4C; Rue Chêne Bonnet 128 6110 Montigny-le-Tilleul Belgium
| | - Sarah Lambotte
- Laboratoire de Chimie Organique; Université Libre de Bruxelles (ULB); avenue F. D. Roosevelt 50, CP160/06, B -1050 Brussels Belgium
| | - Benedetta Cornelio
- Laboratoire de Chimie Organique; Université Libre de Bruxelles (ULB); avenue F. D. Roosevelt 50, CP160/06, B -1050 Brussels Belgium
| | - Corinne Lagrost
- Univ. Rennes; Institut des Sciences Chimiques de Rennes -UMR 6226; Campus de Beaulieu; Rennes Cedex 35042 France
| | - Ivan Jabin
- Laboratoire de Chimie Organique; Université Libre de Bruxelles (ULB); avenue F. D. Roosevelt 50, CP160/06, B -1050 Brussels Belgium
| |
Collapse
|