1
|
Tirey TN, Singh A, Arango JC, Claridge SA. Nanoscale Surface Chemical Patterning of Soft Polyacrylamide with Elastic Modulus Similar to Soft Tissue. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8264-8273. [PMID: 39279906 PMCID: PMC11397139 DOI: 10.1021/acs.chemmater.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Nanometer-scale control over surface functionalization of soft gels is important for a variety of applications including controlling interactions with cells for in vitro cell culture and for regenerative medicine. Recently, we have shown that it is possible to transfer a nanometer-thick precision functional polymer layer to the surface of relatively stiff polyacrylamide gels. Here, we develop a fundamental understanding of the way in which the precision polymer backbone participates in the polyacrylamide radical polymerization and cross-linking process, which enables us to generate high-efficiency transfer to much softer hydrogels (down to 5 kPa) with stiffness similar to that of soft tissue. This approach creates hydrogel surfaces with exposed nanostructured functional arrays that open the door to controlled ligand presentation on soft hydrogel surfaces.
Collapse
Affiliation(s)
- Teah N Tirey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Juan C Arango
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Arango JC, Pintro CJ, Singh A, Claridge SA. Inkjet Printing of Nanoscale Functional Patterns on 2D Crystalline Materials and Transfer to Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8055-8065. [PMID: 38300756 PMCID: PMC10875643 DOI: 10.1021/acsami.3c16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Nanometer-scale control over surface functionality is important in applications ranging from nanoscale electronics to regenerative medicine. However, approaches that provide precise control over surface chemistry at the nanometer scale are often challenging to use with higher throughput and in more heterogeneous environments (e.g., complex solutions, porous interfaces) common for many applications. Here, we demonstrate a scalable inkjet-based method to generate 1 nm-wide functional patterns on 2D materials such as graphite, which can then be transferred to soft materials such as hydrogels. We examine fluid dynamics associated with the inkjet printing process for low-viscosity amphiphile inks designed to maximize ordering with limited residue and show that microscale droplet fluid dynamics influence nanoscale molecular ordering. Additionally, we show that scalable patterns generated in this way can be transferred to hydrogel materials and used to create surface chemical patterns that induce adsorption of charged particles, with effects strong enough to overcome electrostatic repulsion between a charged hydrogel and a like-charged nanoparticle.
Collapse
Affiliation(s)
- Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette 47907, Indiana
| |
Collapse
|
3
|
Williams LO, Nava EK, Shi A, Roberts TJ, Davis CS, Claridge SA. Designing Interfacial Reactions for Nanometer-Scale Surface Patterning of PDMS with Controlled Elastic Modulus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11360-11368. [PMID: 36787222 DOI: 10.1021/acsami.2c22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Control over the surface chemistry of elastomers such as polydimethylsiloxane (PDMS) is important for many applications. However, achieving nanostructured chemical control on amorphous material interfaces below the length scale of substrate heterogeneity is not straightforward, and can be particularly difficult to decouple from changes in network structure that are required for certain applications (e.g., variation of elastic modulus for cell culture). We have recently reported a new method for precisely structured surface functionalization of PDMS and other soft materials, which displays high densities of ligands directly on the material surface, maximizing steric accessibility. Here, we systematically examine structural factors in the PDMS components (e.g., base and cross-linker structures) that impact efficiency of the interfacial reaction that leads to surface functionalization. Applying this understanding, we demonstrate routes for generating equivalent nanometer-scale functional patterns on PDMS with elastic moduli from 0.013 to 1.4 MPa, establishing a foundation for use in applications such as cell culture.
Collapse
Affiliation(s)
- Laura O Williams
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emmanuel K Nava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler J Roberts
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Arango JC, Williams LO, Shi A, Singh A, Nava EK, Fisher RV, Garfield JA, Claridge SA. Nanostructured Surface Functionalization of Polyacrylamide Hydrogels Below the Length Scale of Hydrogel Heterogeneity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43937-43945. [PMID: 36103382 DOI: 10.1021/acsami.2c12034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels are broadly used in applications where polymer materials must interface with biology. The hydrogel network is amorphous, with substantial heterogeneity on length scales up to hundreds of nanometers, in some cases raising challenges for applications that would benefit from highly structured interactions with biomolecules. Here, we show that it is possible to generate ordered patterns of functional groups on polyacrylamide hydrogel surfaces. We demonstrate that, when linear patterns of amines are transferred to polyacrylamide, they pattern interactions with DNA at the interface, a capability of potential importance for preconcentration in chromatographic applications, as well as for the development of nanostructured hybrid materials and supports for cell culture.
Collapse
Affiliation(s)
- Juan C Arango
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura O Williams
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emmanuel K Nava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Racheal V Fisher
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph A Garfield
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Shi A, Singh A, Williams LO, Arango JC, Claridge SA. Nanometer-Scale Precision Polymer Patterning of PDMS: Multiscale Insights into Patterning Efficiency Using Alkyldiynamines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22634-22642. [PMID: 35512386 DOI: 10.1021/acsami.2c04534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most high-resolution interfacial patterning approaches are restricted to crystalline inorganic interfaces. Recently, we have shown that it is possible to generate 1 nm resolution functional patterns on soft materials, such as polydimethylsiloxane (PDMS), by creating highly structured striped patterns of functional alkyldiacetylenes on a hard crystalline surface, photopolymerizing to set the molecular pattern as a striped-phase polydiacetylene (sPDA), and then covalently transferring the sPDAs to PDMS. Transfer depends on the diacetylene polymerization, making it important to understand design principles for efficient sPDA polymerization and cross-linking to PDMS. Here, we combine single-molecule and fluorescence-based metrics for sPDA polymerization and transfer, first to characterize sPDA polymerization of amine striped phases, and then to develop a probabilistic model that describes the transfer process in terms of sPDA-PDMS cross-linking reaction efficiency and number of reactions required for transfer. We illustrate that transferred patterns of alkylamines can be used to direct both adsorption of CdSe nanocrystals with alkyl ligand shells and covalent reactions with fluorescent dyes, highlighting the utility of functional patterning of the PDMS surface.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura O Williams
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Juan C Arango
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Lang EN, Porter AG, Ouyang T, Shi A, Hayes TR, Davis TC, Claridge SA. Oleylamine Impurities Regulate Temperature-Dependent Hierarchical Assembly of Ultranarrow Gold Nanowires on Biotemplated Interfaces. ACS NANO 2021; 15:10275-10285. [PMID: 33998802 DOI: 10.1021/acsnano.1c02414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanocrystals are often synthesized using technical grade reagents such as oleylamine (OLAm), which contains a blend of 9-cis-octadeceneamine with trans-unsaturated and saturated amines. Here, we show that gold nanowires (AuNWs) synthesized with OLAm ligands undergo thermal transitions in interfacial assembly (ribbon vs. nematic); transition temperatures vary widely with the batch of OLAm used for synthesis. Mass spectra reveal that higher-temperature AuNW assembly transitions are correlated with an increased abundance of trans and saturated chains in certain blends. DSC thermograms show that both pure (synthesized) and technical-grade OLAm have primary melting transitions near -5 °C (20-30 °C lower than the literature melting temperature range of OLAm). A second, broader melting transition (in the previous reported melting range) appears in technical grade blends; its temperature varies with the abundance of trans and saturated chains. Our findings illustrate that, similar to biological membranes, blends of alkyl chains can be used to generate mesoscopic hierarchical nanocrystal assembly, particularly at interfaces that further modulate transition temperatures.
Collapse
Affiliation(s)
- Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashlin G Porter
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhong Ouyang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyson C Davis
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Kausar A. Ingenuities of graphyne and graphdiyne with polymers: design insights to high performance nanocomposite. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
10
|
Davis TC, Bechtold JO, Shi A, Lang EN, Singh A, Claridge SA. One Nanometer Wide Functional Patterns with a Sub-10 Nanometer Pitch Transferred to an Amorphous Elastomeric Material. ACS NANO 2021; 15:1426-1435. [PMID: 33410675 DOI: 10.1021/acsnano.0c08741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decades of work in surface science have established the ability to functionalize clean inorganic surfaces with sub-nm precision, but for many applications, it would be useful to provide similar control over the surface chemistry of amorphous materials such as elastomers. Here, we show that striped monolayers of diyne amphiphiles, assembled on graphite and photopolymerized, can be covalently transferred to polydimethylsiloxane (PDMS), an elastomer common in applications including microfluidics, soft robotics, wearable electronics, and cell culture. This process creates precision polymer films <1 nm thick, with 1 nm wide functional patterns, which control interfacial wetting and reactivity, and template adsorption of flexible, ultranarrow Au nanowires. The polydiacetylenes exhibit polarized fluorescence emission, revealing polymer location, orientation, and environment, and resist engulfment, a common problem in PDMS functionalization. These findings illustrate a route for patterning surface chemistry below the length scale of heterogeneity in an amorphous material.
Collapse
Affiliation(s)
- Tyson C Davis
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeremiah O Bechtold
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Hayes TR, Lang EN, Shi A, Claridge SA. Large-Scale Noncovalent Functionalization of 2D Materials through Thermally Controlled Rotary Langmuir-Schaefer Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10577-10586. [PMID: 32852207 DOI: 10.1021/acs.langmuir.0c01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As two-dimensional (2D) materials are more broadly utilized as components of hybrid materials, controlling their surface chemistry over large areas through noncovalent functionalization becomes increasingly important. Here, we demonstrate a thermally controlled rotary transfer stage that allows areas of a 2D material to be continuously cycled into contact with a Langmuir film. This approach enables functionalization of large areas of the 2D material and simultaneously improves long-range ordering, achieving ordered domain areas up to nearly 10 000 μm2. To highlight the layer-by-layer processing capability of the rotary transfer stage, large-area noncovalently adsorbed monolayer films from an initial rotary cycle were used as templates to assemble ultranarrow gold nanowires from solution. The process we demonstrate would be readily extensible to roll-to-roll processing, addressing a longstanding challenge in scaling Langmuir-Schaefer transfer for practical applications.
Collapse
Affiliation(s)
- Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Porter AG, Ouyang T, Hayes TR, Biechele-Speziale J, Russell SR, Claridge SA. 1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar Solvent. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Davis TC, Bechtold JO, Hayes TR, Villarreal TA, Claridge SA. Hierarchically patterned striped phases of polymerized lipids: toward controlled carbohydrate presentation at interfaces. Faraday Discuss 2019; 219:229-243. [PMID: 31298259 DOI: 10.1039/c9fd00022d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microcontact printing can be used to generate well-defined microscopic areas of striped phases of both single-chain and dual-chain amphiphiles.
Collapse
Affiliation(s)
- Tyson C. Davis
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Tyler R. Hayes
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Shelley A. Claridge
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
- Weldon School of Biomedical Engineering
| |
Collapse
|
14
|
Cui D, MacLeod JM, Rosei F. Probing functional self-assembled molecular architectures with solution/solid scanning tunnelling microscopy. Chem Commun (Camb) 2018; 54:10527-10539. [PMID: 30079923 DOI: 10.1039/c8cc04341h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past two decades, solution/solid STM has made clear contributions to our fundamental understanding of the thermodynamic and kinetic processes that occur in molecular self-assembly at surfaces. As the field matures, we provide an overview of how solution/solid STM is emerging as a tool to elucidate and guide the use of self-assembled molecular systems in practical applications, focusing on small molecule device engineering, molecular recognition and sensing and electronic modification of 2D materials.
Collapse
Affiliation(s)
- Daling Cui
- INRS-Energy, Materials and Telecommunications and Center for Self-Assembled Chemical Structures, Varennes, Quebec J3X 1S2, Canada.
| | | | | |
Collapse
|
15
|
Davis TC, Russell SR, Claridge SA. Edge-on adsorption of multi-chain functional alkanes stabilizes noncovalent monolayers on MoS2. Chem Commun (Camb) 2018; 54:11709-11712. [PMID: 30280726 DOI: 10.1039/c8cc06466k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diyne phospholipids adsorb edge-on on MoS2, producing stable monolayers with large, ordered domains, despite low alkane adsorption enthalpies on MoS2.
Collapse
Affiliation(s)
- T. C. Davis
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - S. R. Russell
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - S. A. Claridge
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
- Weldon School of Biomedical Engineering
| |
Collapse
|
16
|
Claridge SA. Standing, lying, and sitting: translating building principles of the cell membrane to synthetic 2D material interfaces. Chem Commun (Camb) 2018; 54:6681-6691. [DOI: 10.1039/c8cc02596g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lessons can be drawn from cell membranes in controlling noncovalent functionalization of 2D materials to optimize interactions with the environment.
Collapse
Affiliation(s)
- S. A. Claridge
- Department of Chemistry and Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|