1
|
Rachamalla AK, Jana PK, Nagarajan S. Recent Advances in Self-Assembled Naphthalimides: From Molecular Design to Applications. Chemistry 2025:e202500001. [PMID: 40192614 DOI: 10.1002/chem.202500001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Naphthalimide-based self-assembled materials have gained significant attention in recent years because of their exceptional versatility and wide range of applications, from sensors and electronics to biomedical. Naphthalimides derivatives, with ease of functionalization and robust photophysical properties, became an ideal platform for creating highly ordered self-assembled architectures with tailored functionalities. This review provides an overall understanding of the recent developments in the synthesis and self-assembly of naphthalimide-based materials, focusing on how self-assembly enhances their performance in various applications. The review examines the role of self-assembly in improving these materials' optical, mechanical, and electronic properties, highlighting their use in sensors for detecting gases, volatile organic compounds (VOCs), and amines. Furthermore, the integration of self-assembled naphthalimides in light-emitting devices, energy-harvesting systems, and fluorescence-based imaging demonstrates their potential in both electronic and biological applications. By analyzing recent developments in molecular design, self-assembly strategies, and applications, this review aims to offer insights into how these materials can be optimized for future technological advancements.
Collapse
Affiliation(s)
- Arun Kumar Rachamalla
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, Telangana, 506004, India
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, CUNY, New York, New York, 10031, USA
| | - Pralay Kumar Jana
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, Telangana, 506004, India
| | - Subbiah Nagarajan
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, Telangana, 506004, India
| |
Collapse
|
2
|
Bhandari R, Kaleem M, Rai R, Shraogi N, Patnaik S, Misra A. A sensitive molecular probe exhibiting significant change in their photophysical and morphological behavior upon interaction with Fe 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125671. [PMID: 39742620 DOI: 10.1016/j.saa.2024.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/03/2025]
Abstract
An efficient molecular probe 8 has been designed and synthesized. The photophysical, electrochemical and morphological behavior of the probe has been examined in the absence and presence of different ions. The probe 8 at 90 % water fraction in acetonitrile showed aggregation induced emission (AIE). Probe 8 upon interaction with ions binds with Fe3+ ion selectively in a 1:1 stoichiometry and showed fluorescence "turn-Off" response with good limit of detection (LOD = 92.2 nM). The particle size (DLS method) of probe upon increasing water fraction in acetonitrile showed a gradual increase while upon formation of a stable complex, 8 + Fe3+ particle size decreased along with change in morphology of the probe. SEM and TEM studies showed that in pure acetonitrile probe self-assemble into a sheet like structure of uneven surface. While in aggregated state (fw, 90 %) it changes to a uniform hollow rectangular rod shape structure. Further interaction of the probe with Fe3+ ions in aggregated state acquired a well-defined smooth sheet. Electrochemical (CV) studies suggested that the redox property of the probe incurred a marginal change in band gap upon complexation with Fe3+. The cell imaging studies were performed to detect Fe3+ in HeLa cells. The paper strip test and real water sample analysis showed the potential analytical application of probe to detect Fe3+ with a naked-eye sensitive visible color change. The formation of a complex, 8 + Fe3+ involving N and O atoms of the probe molecule was confirmed by 1HNMR and HRMS data.
Collapse
Affiliation(s)
- Rimpi Bhandari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Mohammed Kaleem
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Ravisen Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nikita Shraogi
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | - Satyakam Patnaik
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | - Arvind Misra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Malik P, Yadav M, Bhushan R. Design, Synthesis and Application of 1,4-disubstituted 1,2,3-triazole Based Chemosensors: A Promising Avenue. CHEM REC 2025; 25:e202400195. [PMID: 39715732 DOI: 10.1002/tcr.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The 1,2,3-triazole-based chemosensors, synthesized through Cu(I)-catalyzed azide-alkyne cycloaddition via 'click chemistry', offer a straightforward yet highly effective method for detecting metal cations and anions with remarkable accuracy, selectivity and sensitivity, making them invaluable across various fields such as chemistry, pharmacology, environmental science and biology. The selective recognition of these ions is crucial due to their significant roles in biological and physiological processes, where even slight concentration variations can have major consequences. The article reviews literature from 2017 to 2024, highlighting advancements in the synthesis of 1,2,3-triazole-based ligands and their application (along with sensing mechanism) for detection of various ions causing health and environmental hazards. The detection aspects have been discussed sequentially for the transition-, inner transition-, and the metals from the s or p block of the periodic table.
Collapse
Affiliation(s)
- Poonam Malik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Mona Yadav
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
4
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
5
|
Chen TR, Chang KC, Chen CY, Wu TW, Lee LW, Shen LC, Chen HN, Chung WS. Calix[4]arene-based Supramolecular Gels for Mercury Ion Removal in Water. Chem Asian J 2023; 18:e202300739. [PMID: 37800724 DOI: 10.1002/asia.202300739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
A calix[4]arene-based gelator 1, with lower-rim mono triazolylpyridine group, capable of spontaneous self-assembly into microspheres in different ethanol/H2 O mixtures, is synthesized. The concentration-dependent 1 H NMR spectra and X-ray single-crystal structure of 1 provided evidence for self-assembly of gelator 1 via cooperative interactions of intermolecular noncovalent forces. Furthermore, metallogels by self-assembly of 1 was found to exhibit remarkable selectivity toward Hg2+ ions. 1 H NMR spectra support that Hg2+ ion was bound to the nitrogen atoms of two coordination sites of 1, which composed of triazole and pyridine. Moreover, the results of field emission scanning electron microscopy and rheology experiments indicated that Hg2+ ions not only enhanced the gelling ability of gelator 1 in ethanol but also led to morphological change of its self-assembly through metal-ligand interactions. Finally, the in situ gelation, triggered by mixing a gelator solution of 1 in ethanol with water samples such as deionized (DI), tap, and lake water, leads to the effective removal of Hg(II) from a water sample which reduced from 400 to 1.6 ppm.
Collapse
Grants
- MOST-112-2113-M-019-002-MY2 Ministry of Science and Technology, Taiwan, ROC
- MOST-110-2113-M-A49-009 Ministry of Science and Technology, Taiwan, ROC
- MOST-110-2113-M-019-003-MY2 Ministry of Science and Technology, Taiwan, ROC
- MOST-109-2113-M-009-016 Ministry of Science and Technology, Taiwan, ROC
- MOST-108-2113-M-009-006 Ministry of Science and Technology, Taiwan, ROC
Collapse
Affiliation(s)
- Tyng-Rong Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Ting-Wen Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Li-Wei Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Li-Ching Shen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hsin-Ni Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
6
|
Vadia FY, Ghosh S, Mehta VN, Jha S, Malek NI, Park TJ, Kailasa SK. Fluorescence "Turn OFF-ON" detection of Fe 3+ and propiconazole pesticide using blue emissive carbon dots from lemon peel. Food Chem 2023; 428:136796. [PMID: 37441937 DOI: 10.1016/j.foodchem.2023.136796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
In this study, water-soluble carbon dots (CDs) were employed as a novel fluorescence "turn OFF-ON" sensor to detect Fe3+ ions in pharmaceutical sample and propiconazole (PC) in food samples. Blue fluorescent "LPCDs" are synthesized from the lemon peel that exhibited emission at 468 nm when excited at 378 nm. The average size of the as-prepared LPCDs is 2.03 nm, displaying a quantum yield of 32 %. Fluorescence "turn OFF-ON" strategy was developed for sensing of Fe3+ ion and PC, demonstrating favorable linearity in the range of 0.5-180 μM and 0.1-40 μM with the detection limits of 0.18 μM and 0.054 μM for Fe3+ and PC, respectively. Further, LPCDs-loaded cellulose paper was used as visual reader to detect Fe3+ and PC. This approach was effectively applied to detect Fe3+ and PC in pharmaceutical and vegetable samples.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Vaibhavkumar N Mehta
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat 395007, Gujarat, India
| | - Sanjay Jha
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat 395007, Gujarat, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
7
|
Shi M, Jiang J, Gao X, Li Y, Xiao K, Han Q, Kong W, Liu Q, Yao Z. Rapid and Visual Detection of Al
3+
Based on Supramolecular Self‐Assembly of a Water‐Soluble Perylene Diimide Derivative. ChemistrySelect 2022. [DOI: 10.1002/slct.202203635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mei Shi
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
| | - Jinghan Jiang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
- Yantai Institute of China Agricultural University No.2006, Binhai Mid-Rd, High-tech Zone Yantai City, Shandong Province 264670 China
| | - Xiao Gao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
| | - Yining Li
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
| | - Keren Xiao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
| | - Qi‐an Han
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
| | - Weifu Kong
- Yantai Institute of China Agricultural University No.2006, Binhai Mid-Rd, High-tech Zone Yantai City, Shandong Province 264670 China
| | - Qingliang Liu
- Shandong Baier Testing Co., Ltd. Weifang City, Shandong Province 261061 China
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University 17 Tsinghua East Road, Haidian District Beijing 100083 China
- Yantai Institute of China Agricultural University No.2006, Binhai Mid-Rd, High-tech Zone Yantai City, Shandong Province 264670 China
| |
Collapse
|
8
|
Han Q, Wang Q, Gao A, Ge X, Wan R, Cao X. Fluorescent Quinoline-Based Supramolecular Gel for Selective and Ratiometric Sensing Zinc Ion with Multi-Modes. Gels 2022; 8:605. [PMID: 36286106 PMCID: PMC9601706 DOI: 10.3390/gels8100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2024] Open
Abstract
A gelator 1 containing functional quinoline and Schiff base groups that could form organogels in DMF, DMSO, acetone, ethanol and 1,4-dioxane was designed and synthesized. The self-assembly process of geator 1 was characterized by field emission scanning electron microscopy (FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy(FTIR), X-ray powder diffraction (XRD) and water contact angle. Under non-covalent interactions, gelator 1 self-assembled into microbelts and nanofiber structures with different surface wettability. Weak fluorescence was emitted from the solution and gel state of 1. Interestingly, gelator 1 exhibited good selectivity and sensitivity towards Zn2+ in solution and gel states along with its emission enhancement and change. The emission intensity at 423 nm of solution 1 in 1,4-dioxane was slightly enhanced, and a new emission peak appeared at 545 nm along with its intensity sequentially strengthened in the titration process. The obvious ratiometric detection process was presented with a limit of detection (LOD) of 5.51 μM. The detection mechanism was revealed by a theoretical calculation and NMR titration experiment, which was that Zn2+ induced the transition from trans- to cis- of molecule 1 and further coordinated with 1. This study will introduce a new method for the construction of functional self-assembly gel sensors for the detection of Zn2+.
Collapse
Affiliation(s)
- Qingqing Han
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qingqing Wang
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Aiping Gao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xuefei Ge
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Rong Wan
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Gao A, Han Q, Wang Q, Wan R, Wu H, Cao X. Bis-Pyridine-Based Organogel with AIE Effect and Sensing Performance towards Hg 2. Gels 2022; 8:gels8080464. [PMID: 35892723 PMCID: PMC9331886 DOI: 10.3390/gels8080464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
A novel gelator (1) based on a bis-pyridine derivative was designed and synthesized, which could form stable gels in methanol, ethanol, acetonitrile, ethyl acetate, DMF/H2O (4/1, v/v) and DMSO/H2O (4/1, v/v). The self-assembly process of gelator 1 was studied by field emission scanning electron microscopy (FESEM), UV–vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction and a water contact angle experiment. Gelator 1 exhibited obvious AIE behavior. On the base of its AIE, the gel of 1 could detect Hg2+, which resulted in fluorescence quenching and a gel–sol transition. 1H NMR titration experiments with Hg2+ revealed that the metal coordination interaction induced the fluorescence quenching and the breakdown of the noncovalent interaction in the gel system. This research provides a new molecular mode for designing a functional self-assembly gel system.
Collapse
|
10
|
Wang Q, Wu H, Gao A, Ge X, Chang X, Cao X. Bis-naphthalimide-based supramolecular self-assembly system for selective and colorimetric detection of oxalyl chloride and phosgene in solution and gas phase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Jain N, Kaur N. A comprehensive compendium of literature of 1,8-Naphthalimide based chemosensors from 2017 to 2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Singha J, Patra D, Kumar P, Shunmugam R. Highly Efficient Multi‐Tasking Porphyrin‐Based Chemosensor for Mercury Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jyotirlata Singha
- Polymer Research Center Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur India
| | - Diptendu Patra
- Polymer Research Center Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur India
| | - Pawan Kumar
- Polymer Research Center Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur India
| | - Raja Shunmugam
- Polymer Research Center Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur India
| |
Collapse
|
13
|
Li Y, Wen X, Ding X, Teng X, Xiong X, Liu Y. Two types of rhodamine–naphthalimide-based fluorescence sensors for different ratiometric detection of Hg(II) or Fe(III). RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Huang Q, Li Q, Zhang HL, Zhu W, Qu WJ, Lin Q, Yao H, Zhang YM, Wei TB. A novel fluorometric chemosensor based on imidazo[4,5-b]phenazine-2-thione for ultrasensitive detection and separation of Hg2+ in aqueous solution. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We synthesized and developed 1,3-dihydro-2H-imidazo[4,5-b]phenazine-2-thione as a ratiometric chemosensor for Hg2+ recognition in a DMSO/H2O (v/v = 9:1) binary solution. We rationally introduced the phenazine imidazole group as the fluorophore and the thione moiety as the recognition site to bind Hg2+. Interestingly, the chemosensor showed an ultrasensitive response to Hg2+, and the lowest limit of detection was 0.167 nM. In addition, it can also separate Hg2+ from aqueous solutions with excellent ingestion capacity, with an adsorption ratio of up to 96%. Furthermore, ion test strips based on chemosensors were fabricated for convenient and efficient detection of Hg2+.
Collapse
Affiliation(s)
- Qing Huang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750006, P.R. China
| | - Qiao Li
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Hai-Li Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Wei Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
15
|
Cao X, Han Q, Wang Q, Gao A, Ge XF, Yu X, Wang G. Fluorescent naphthalimide-based supramolecular gel system for detection phosgene, sulfoxide chloride and oxalyl dichloride. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Cai CH, Wang HL, Man RJ. Monitoring of Fe (II) ions in living cells using a novel quinoline-derived fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119729. [PMID: 33784593 DOI: 10.1016/j.saa.2021.119729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Physiologically, Fe(III) and Fe(II) is the most important redox pairs in a variety of biological and environmental procedures with its capability of transition. The detection of physiological iron, especially Fe(II), has become the recent research focus of investigations on revealing the mechanism of iron-related metabolism. In this work, we exploited a novel quinoline-derived fluorescent probe, YTP, for the detection of Fe(II). It could monitor the level of Fe(II) with a linear range of 0-2.0 equivalent and the detection limit of 0.16 µM. High selectivity from other analytes including Fe(III) and steadiness for over 24 h confirmed the practicability of YTP. YTP was further applied in real buffer systems and in cellular imaging. The probe could achieve the semi-quantitative monitoring of Fe(II) in living cells. This work provided a potential implement for the detection of Fe(II), and raised important information for further researches on the redox pairs of iron, in mechanism and in practice.
Collapse
Affiliation(s)
- Chun-He Cai
- School of Water Resources and Environment, China University of Geosciences (Beijing), 20 Chengfu Rd., Beijing 100083, PR China; Beijing Kaiheyingran Consulting Co., Ltd., F-101, Fuliaidingbao, Baijiazhuang No.1, Chaoyang Dist, Beijing 100020, China; Nanjing University, School of Life Science, Xianlin Campus, No.163, Xianlin Rd, 210093 Nanjing, China
| | - He-Li Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), 20 Chengfu Rd., Beijing 100083, PR China.
| | - Ruo-Jun Man
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Nanning 530006, China.
| |
Collapse
|
17
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Kshtriya V, Koshti B, Pandey DK, Kharbanda S, Kanth P C, Singh DK, Bhatia D, Gour N. Sequential and cellular detection of copper and lactic acid by disaggregation and reaggregation of the fluorescent panchromatic fibres of an acylthiourea based sensor. SOFT MATTER 2021; 17:4304-4316. [PMID: 33908562 DOI: 10.1039/d1sm00038a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report, for the first time, the self-assembly of an acyl-thiourea based sensor, N-{(6-methoxy-pyridine-2-yl) carbamothioyl}benzamide (NG1), with panchromatic fluorescent fibres and its dual-sensing properties for the sequential detection of Cu2+ ions and lactic acid. The panchromatic fibres formed by NG1 were disrupted in the presence of Cu2+ ions and this was accompanied by a visible colour change in the solution from colourless to yellow. The addition of lactic acid to the NG1 + Cu2+ solution, on the other hand, induced re-aggregation to fibrillar structures and the colour of the solution again changed to colourless. Hence, it may be surmised that the disaggregation and re-aggregation impart unique dual-sensing properties to NG1 for the sequential detection of Cu2+ ions and lactic acid. The application of NG1 as a selective sensor for Cu2+ ions and lactic acid has been assessed in detail by UV-visible and fluorescence spectroscopy. Furthermore, two structural variants of NG1, namely, NG2 and NG3, were synthesized, which suggest the crucial role of pyridine in imparting panchromatic emission properties and of both pyridine and acyl-thiourea side chain in the binding of Cu2+ ions. The O-methoxy group plays an important part in making NG1 the most sensitive probe of its structural analogs. Finally, the utility of NG1 for the sequential and cellular detection of Cu2+ ions and lactic acid was studied in human RPE cells. The experimental results of the interaction of NG1 with Cu2+ ions and lactic acid have also been validated theoretically by using quantum chemical calculations based on density functional theory (DFT). To the best of our knowledge, this is the first report wherein a dual sensor for Cu2+ ions and lactate ions is synthesized. More importantly, the aggregation properties of the sensor have been studied extensively and an interesting correlation of the photophysical properties of the probe with its self-assembling behavior has been elucidated.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat 382740, India.
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat 382740, India.
| | - Deepak K Pandey
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India
| | - Sumit Kharbanda
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Chandra Kanth P
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
| | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat 382740, India.
| |
Collapse
|
19
|
Ghosh S, Baildya N, Ghosh NN, Ghosh K. Naphthalimide-decorated imino-phenol: supramolecular gelation and selective sensing of Fe 3+ and Cu 2+ ions under different experimental conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00259g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Compound 1 forms gels in DMF–H2O (1 : 1, v/v) and DMSO–H2O (1 : 1, v/v). While it was insensitive to any metal ion in DMF–H2O, the gel state was responsive to Fe3+ over the other metal ions studied. In CH3CN or aqueous CH3CN compound 1 senses Cu2+ ion.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | | | | | - Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|
20
|
Liu Z, Jiang Y, Jiang J, Zhai D, Wang D, Liu M. Self-assembly of isomeric naphthalene appended glucono derivatives: nanofibers and nanotwists with circularly polarized luminescence emission. SOFT MATTER 2020; 16:4115-4120. [PMID: 32195501 DOI: 10.1039/c9sm02542a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two isomeric naphthalene appended glucono derivatives substituted at the 1 or 2-naphthyl positions (Nap-1 and Nap-2) were designed and their self-assembly behaviors and optical properties were investigated. Nap-1 and Nap-2 were found to self-assemble into nanofibers and nanotwists, respectively. While the molecular chirality of the glucono moiety could not be effectively transferred to the naphthalene moiety in the Nap-1 system, this was achieved in the Nap-2 assembly. Thus, the Nap-2 assembly showed obvious circular dichroism (CD) and circularly polarized luminescence (CPL) signals. From the XRD patterns and IR spectra of the supramolecular assemblies, it was found that Nap-2 packed in a more orderly fashion than Nap-1, leading to a hierarchical assembly forming nanotwist structures. Moreover, a light-harvesting system based on Nap-2 supramolecular gels and dyes was established, in which an efficient energy transfer was demonstrated from Nap-2 to an acceptor Eosin Y. It was further found that both chirality and energy transfer enhanced the dissymmetry factor of Eosin Y CPL emission.
Collapse
Affiliation(s)
- Zongwen Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Sekhar KPC, Swain DK, Holey SA, Bojja S, Nayak RR. Unsaturation and Polar Head Effect on Gelation, Bioactive Release, and Cr/Cu Removal Ability of Glycolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3080-3088. [PMID: 32134673 DOI: 10.1021/acs.langmuir.0c00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing of multifunctional soft and smart materials from natural sources is a useful strategy for producing safer chemicals having potential applications in biomedical research and pharmaceutical industries. Herein, eight glycolipids with variation in unsaturation of hydrophobic tail and polar headgroup size were designed. The effect of unsaturation in the tail group and headgroup size on gelation ability, and mechanical and thermal stability of glycolipid hydro/organogels was studied to understand structure and property relationship. Glycolipids are functional amphiphilic molecules having potential applications in the field of drug delivery and metal removal. The encapsulation capacity and kinetic release behavior of hydrophobic/hydrophilic bioactives like curcumin/riboflavin from the hydrophobic/hydrophilic pockets of glycolipids hydro/organogels was examined. A significant observation was that the glucamine moiety of the glycolipid headgroup plays a vital role in removal of Cr and Cu from oil/water biphasic systems. Typical functions of the glycolipid hydrogels are metal chelation and enzyme-triggered release behavior, enabled them as promising material for Cr, Cu removal from edible oils and controlled release of water soluble/insoluble bioactives.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Kumar Swain
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Snehal Ashokrao Holey
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreedhar Bojja
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Calatrava-Pérez E, Acherman S, Stricker L, McManus G, Delente J, Lynes AD, Henwood AF, Lovitt JI, Hawes CS, Byrne K, Schmitt W, Kotova O, Gunnlaugsson T, Scanlan EM. Fluorescent supramolecular hierarchical self-assemblies from glycosylated 4-amino- and 4-bromo-1,8-naphthalimides. Org Biomol Chem 2020; 18:3475-3480. [DOI: 10.1039/d0ob00033g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The investigation into the self-assembly formation of the glycan based 4-amino- and 4-bromo-1,8-naphthalimide (Nap) structures1–3is presented.
Collapse
|
23
|
Ferrocene appended fluorescein-based ratiomeric fluorescence and electrochemical chemosensor for Fe3+ and Hg2+ ions in aqueous media: Application in real samples analysis. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Wu Y, Lin M, Liu D, Liu M, Qian J. Two-dimensional Cd(ii) coordination polymer encapsulated by Tb 3+ as a reversible luminescent probe for Fe 3. RSC Adv 2019; 9:34949-34957. [PMID: 35530685 PMCID: PMC9074126 DOI: 10.1039/c9ra06639j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
A two-dimensional luminescent cadmium(ii) coordination polymer, [Cd(modbc)2] n (Cd-P); modbc = 2-methyl-6-oxygen-1,6-dihydro-3,4'-bipyridine-5-carbonitrile, was successfully synthesized by a solvothermal reaction and fully characterized. Cd-P exhibited excellent luminescence emission, and detected Cu2+, Co2+, Fe2+, Hg2+, Ni2+ and Fe3+ ions with high sensitivity and showed good anti-interference performance. After encapsulation of Tb3+ ions in Cd-P, the as-obtained fluorescent functionalized Tb3+@Cd-P maintained distinct chemical stabilities in different pHs and metal salt solutions. Subsequently, we explored the potential application of Tb3+@Cd-P as a probe for Fe3+ ions. A new and convenient method for individual identification of Fe3+ ions by the combination of Cd-P and Tb3+@Cd-P was successfully established. A possible sensing mechanism is discussed in detail.
Collapse
Affiliation(s)
- Yuandi Wu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Meihua Lin
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Dongyang Liu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Ming Liu
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Jing Qian
- College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Ministry of Education Tianjin 300387 P. R. China
| |
Collapse
|
25
|
Jiang D, Xue X, Zhu M, Zhang G, Wang Y, Feng C, Wang Z, Zhao H. Novel Rhodamine-Derivated Dual-Responsive Colorimetric Fluorescent Chemoprobe for the Hypersensitive Detection of Ga3+ and Hg2+ and Biological Imaging. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daoyong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xingying Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Feng
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hong Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
26
|
Zhang YP, Wang BX, Yang YS, Liang C, Yang C, Chai HL. Synthesis and self-assembly of chalcone-based organogels. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Chen YY, Gong GF, Fan YQ, Zhou Q, Zhang QP, Yao H, Zhang YM, Wei TB, Lin Q. A novel AIE-based supramolecular polymer gel serves as an ultrasensitive detection and efficient separation material for multiple heavy metal ions. SOFT MATTER 2019; 15:6878-6884. [PMID: 31414697 DOI: 10.1039/c9sm01177c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, ultrasensitive stimuli-responsive materials have received extensive attention due to their high sensitivity and wide applications. Herein, we report a novel approach to design ultrasensitive responsive materials by rationally introducing the aggregation-induced emission (AIE) effect into supramolecular polymer gels. According to this approach, by rationally introducing self-assembly moieties and a fluorophore, the obtained gelator DNS can act as an AIEgen; it showed strong AIE after aggregating into the supramolecular polymer gel GDNS. More interestingly, because the aggregation of DNS led to amplification of the detective signal, the AIE-based supramolecular polymer gel GDNS could ultrasensitively detect the heavy metal ions Hg2+, Cu2+, and Fe3+ by a signal amplification mechanism; the lowest detection limits reached 10-11 M. In addition, the xerogel of GDNS could adsorb and separate Hg2+, Cu2+, and Fe3+ from aqueous solution with favourable adsorption properties, and the adsorption rates ranged from 94.70% to 99.37%. Furthermore, the gel GDNS could act as a convenient test kit for Hg2+, Cu2+, and Fe3+ as well as a smart fluorescent display material.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li Y, Li Q, Gao A, Wu J, Wu Y, Cao X. Design and preparation of a novel fluorescent naphthalimide derivative supramolecular self-assembly system and its bioimaging application. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yiran Li
- College of Chemistry and Chemical Engineering&Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, China
| | - Qiongya Li
- College of Chemistry and Chemical Engineering&Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, China
| | - Aiping Gao
- College of Chemistry and Chemical Engineering&Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, China
| | - Jie Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, P. R. China
| | - Yongquan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, P. R. China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering&Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, China
| |
Collapse
|
29
|
Cao X, Li Y, Yu Y, Fu S, Gao A, Chang X. Multifunctional supramolecular self-assembly system for colorimetric detection of Hg 2+, Fe 3+, Cu 2+ and continuous sensing of volatile acids and organic amine gases. NANOSCALE 2019; 11:10911-10920. [PMID: 31139798 DOI: 10.1039/c9nr01433k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel multifunctional gelator (1) based on an azobenzene derivative was designed and characterized. This compound could gelate some solvents including hexane, petroleum ether, DMSO, acetonitrile and ethanol through a heating-cooling procedure. The self-assembly process in different solvents was studied by means of UV-vis absorption and Fourier transform infrared (FTIR) spectra, field emission scanning electron microscopy (FESEM), rheological measurements, X-ray powder diffraction and water contact angle experiments. Interestingly, compound 1 had a high-contrast colorimetric detection ability towards Hg2+, Cu2+, Fe3+ and volatile acids and further organic amine gases in solution through its color change. At the same time, organogel 1 in acetonitrile also exhibited detection performance through a color or gel state change. In the response process, the self-assembly structures were changed from a nanofiber into a microsphere under induction by analytes. More significantly, film 1 could continuously detect volatile acids and organic amine gases. The number of cycles of film 1 for the detection of volatile acids and organic amine gases was at least seven times. The limit of detection (LOD) of film 1 towards TFA was calculated to be 0.0848 ppb. The sensing mechanisms were studied using 1HNMR, FESEM, UV-vis absorption spectra and HRMS. The intramolecular cyclization occurred on molecule 1 and a H2S molecule was lost during the detection process of Hg2+. It was proposed that the -N[double bond, length as m-dash]N- bonding could be coordinated by Fe3+ and Cu2+ and this further induced the absorption spectra and color change. For a volatile acid, it was possible that the volatile acid was combined with the N,N-dimethyl amine group of molecule 1. This research opens up a novel pathway to the fabrication of supramolecular self-assembly gels to detect polymetallic ions and trace volatile acids in the environment.
Collapse
Affiliation(s)
- Xinhua Cao
- College of Chemistry and Chemical Engineering, Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | | | | | |
Collapse
|
30
|
Cao X, Li Y, Gao A, Lv H. Regulation of gel formation, hierarchical structures, rheological behavior, and surface wettability via the linker of molecule center on bis(cholesteric) derivatives supramolecular self-assembly systems. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Boorboor Azimi E, Badiei A, Jafari M, Banitalebi Dehkordi A, Ghasemi JB, Mohammadi Ziarani G. Boron-doped graphitic carbon nitride as a novel fluorescent probe for mercury( ii) and iron( iii): a circuit logic gate mimic. NEW J CHEM 2019; 43:12087-12093. [DOI: 10.1039/c9nj03127h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Boron-g-C3N4 was applied as a novel practical fluorescent probe to detect mercury and ferric ions in real samples.
Collapse
Affiliation(s)
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Maryam Jafari
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | | | - Jahan B. Ghasemi
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | | |
Collapse
|