1
|
Doshi N, Guo W, Chen F, Venema P, Shum HC, de Vries R, Li X. Simple and complex coacervation in systems involving plant proteins. SOFT MATTER 2024; 20:1966-1977. [PMID: 38334990 DOI: 10.1039/d3sm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Plant-based foods are gaining popularity as alternatives to meat and dairy products due to sustainability and health concerns. As a consequence, there is a renewed interest in the phase behaviour of plant proteins and of mixtures of plant proteins and polysaccharides, in particular in the cases where coacervation is found to occur, i.e., liquid-liquid phase separation (LLPS) into two phases, one of which is rich in biopolymers and one of which is poor in biopolymer. Here we review recent research into both simple and complex coacervation in systems involving plant proteins, and their applications in food- as well as other technologies, such as microencapsulation, microgel production, adhesives, biopolymer films, and more.
Collapse
Affiliation(s)
- Nirzar Doshi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Wei Guo
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
2
|
Jia J, Liu RK, Sun Q, Wang JX. Efficient Construction of pH-Stimuli-Responsive Colloidosomes with High Encapsulation Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015806 DOI: 10.1021/acs.langmuir.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Intelligent responsive colloidosomes have attracted increasing attention for their potential to enhance the efficacy and decrease the side effects of drugs in biomedical applications. However, a low encapsulation efficiency and complicated preparation method greatly limit their development. Herein, we report an efficient approach for the construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency by a high-gravity technology. The conditions under which latex particles with different methacrylic acid contents can successfully self-assemble into colloidosomes are explored. During the preparation process, emulsions emulsified for only 10 min at 2500 rpm in a unique high-gravity shearing surroundings are clarified owing to the greatly enhanced micromixing, while the emulsions emulsified for 30 min by a traditional high-speed shear machine at 4000 rpm are still yellow-white. More importantly, regular spherical colloidosomes encapsulating an anticancer drug doxorubicin not only achieve a small mean diameter of 2.82 μm but also realize a high encapsulation efficiency of 76.5%. The release performance of doxorubicin has an obvious pH-stimuli-responsive regularity and follows the first-order model of sustained release. The construction of intelligent responsive colloidosomes as drug carriers provides a route for controlled drug release and biomedical applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Erkamp NA, Sneideris T, Ausserwöger H, Qian D, Qamar S, Nixon-Abell J, St George-Hyslop P, Schmit JD, Weitz DA, Knowles TPJ. Spatially non-uniform condensates emerge from dynamically arrested phase separation. Nat Commun 2023; 14:684. [PMID: 36755024 PMCID: PMC9908939 DOI: 10.1038/s41467-023-36059-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
The formation of biomolecular condensates through phase separation from proteins and nucleic acids is emerging as a spatial organisational principle used broadly by living cells. Many such biomolecular condensates are not, however, homogeneous fluids, but possess an internal structure consisting of distinct sub-compartments with different compositions. Notably, condensates can contain compartments that are depleted in the biopolymers that make up the condensate. Here, we show that such double-emulsion condensates emerge via dynamically arrested phase transitions. The combination of a change in composition coupled with a slow response to this change can lead to the nucleation of biopolymer-poor droplets within the polymer-rich condensate phase. Our findings demonstrate that condensates with a complex internal architecture can arise from kinetic, rather than purely thermodynamic driving forces, and provide more generally an avenue to understand and control the internal structure of condensates in vitro and in vivo.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine (Division of Neurology), University of Toronto and University Health Network, Toronto, Ontario, M5S 3H2, Canada
- Department of Neurology, Columbia University, 630 West 168th St, New York, NY, 10032, USA
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - David A Weitz
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
4
|
Liu H, Liao X, Ren Y. Effects of additive dosage and coagulation bath pH on amphoteric fluorocarbon special surfactant (FS-50) blend PVDF membranes. CHEMOSPHERE 2022; 287:132212. [PMID: 34547558 DOI: 10.1016/j.chemosphere.2021.132212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Amphiphilic copolymers containing hydrophilic and hydrophobic blocks represented by surfactants have proven to be more effective for modifying membranes than hydrophilic copolymers. However, studies on the effects of additive and coagulation bath pH on the morphology and properties of surfactant-modified membranes have rarely been reported. Hence, this study aims to investigate the effects of the additive dosage and the coagulation bath pH on the mechanisms of phase inversion and performance improvement of amphoteric fluorocarbon special surfactant (FS-50) blended PVDF membranes. It was observed that the pure water flux increased from 114.68 LMH/bar of the original membrane M0 to 205.02 LMH/bar of the blend membrane M1, and then to 615.88 LMH/bar of the coagulation-bath-regulated membrane MPH9 with a high BSA rejection rate of 90.86%, showing a two-stage jump. The addition of FS-50 promoted the instantaneous phase inversion of the membrane, allowing the blend membrane to exhibit a higher proportion of pore characteristics and stronger permeability. After that, the mechanisms of the membrane phase inversion process affected by the coagulation bath pH were interpreted according to the pH-response characteristics of FS-50 in terms of charge repulsion effect and compressed double-electron layer effect. Furthermore, the cross-sectional morphology and the surface structure of the membrane prepared in acidic and alkaline coagulation baths were significantly affected by the pH of the coagulation bath, exhibiting different features. For one, the porosity of the membranes gradually decreased as the acidity and alkalinity of the coagulation bath increased, and the membrane MPH9 exhibited both maximum surface and overall porosity. For another, the coagulation bath pH did not negatively affect the contact angle, surface roughness and tensile strength of the membranes. Overall, adjusting the dosage of FS-50 and the pH of the coagulation bath is a promising approach to greatly enhance membrane performance.
Collapse
Affiliation(s)
- Hailong Liu
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China.
| | - Xiangjun Liao
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Yuxia Ren
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| |
Collapse
|
5
|
Zhang W, Chen Z, Yang R, Hua X, Zhao W, Guan S. Application of Caseinate Modified with Maillard Reaction for Improving Physicochemical Properties of High Load Flaxseed Oil Microcapsules. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenbin Zhang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Zhengjun Chen
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Shuyi Guan
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
6
|
|
7
|
Chen N, Zhao Z, Wang Y, Dimova R. Resolving the Mechanisms of Soy Glycinin Self-Coacervation and Hollow-Condensate Formation. ACS Macro Lett 2020; 9:1844-1852. [PMID: 35653686 DOI: 10.1021/acsmacrolett.0c00709] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Self-coacervation of animal-derived proteins has been extensively investigated while that of plant proteins remains largely unexplored. Here, we study the process of soy glycinin self-coacervation and transformation into hollow condensates. The protein hexameric structure composed of hydrophilic and hydrophobic polypeptides is crucial for coacervation. The process is driven by charge screening of the intrinsically disordered region of acidic polypeptides, allowing for weak hydrophobic interactions between exposed hydrophobic polypeptides. We find that the coacervate surface exhibits order, which stabilizes the coacervate shape during hollow-condensate formation. The latter process occurs via nucleation and growth of protein-poor phase in the coacervate interior, during which another ordered layer at the inner surface is formed. Aging enhances the stability of both coacervates and hollow condensates. Understanding plant protein coacervation holds promises for fabricating novel functional materials.
Collapse
Affiliation(s)
- Nannan Chen
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, China
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany
| | - Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany
| | - Yong Wang
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, China
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
8
|
Zhao H, Guo M, Ding T, Ye X, Liu D. Exploring the mechanism of hollow microcapsule formation by self-assembly of soy 11s protein upon heating. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Chen N, Nicolai T, Chassenieux C, Wang Y. pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Zhao H, Zhou X, Xu E, Guo M, Liu D. Extrinsic factors influencing nano-/micro-particle formation in pure soy glycinin solution via heating. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zhang K, Shao G, Yang B, Zhao C, Ma Y, Yang W. Facile fabrication of shell crosslinked microcapsule by visible light induced graft polymerization for enzyme encapsulation. Chem Commun (Camb) 2020; 56:6862-6865. [DOI: 10.1039/d0cc02225j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy to encapsulate enzymes into microcapsule fabricated by visible light-induced graft polymerization using CaCO3microparticles as template was developed.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Laboratory of Biomedical Materials
| | - Guangjun Shao
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Laboratory of Biomedical Materials
| | - Bowei Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Laboratory of Biomedical Materials
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Laboratory of Biomedical Materials
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Laboratory of Biomedical Materials
| |
Collapse
|
12
|
Cochereau R, Nicolai T, Chassenieux C, Silva JV. Mechanism of the spontaneous formation of plant protein microcapsules in aqueous solution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|