1
|
Mohammad Mehdipour N, Kumar H, Kim K, Sundararaj U, Shor RJ, Natale G. Manipulating mechanical properties of PEG-based hydrogel nanocomposite: A potential versatile bio-adhesive for the suture-less repair of tissue. J Mech Behav Biomed Mater 2024; 150:106285. [PMID: 38088008 DOI: 10.1016/j.jmbbm.2023.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Multifunctional bio-adhesives with tunable mechanical properties are obtained by controlling the orientation of anisotropic particles in a blend of fast-curing hydrogel with an imposed capillary flow. The suspensions' microstructural evolution was monitored by the small-angle light scattering (SALS) method during flow up to the critical Péclet number (Pe≈1) necessary for particle orientation and hydrogel crosslinking. The multifunctional bio-adhesives were obtained by combining flow and UV light exposure for rapid photo-curing of PEGDA medium and freezing titania rods' ordered microstructures. Blending the low- and high-molecular weight of PEGDA polymer improved the mechanical properties of the final hydrogel. All the hydrogel samples were non-cytotoxic up to 72 h after cell culturing. The system shows rapid blood hemostasis and promotes adhesive and cohesive strength matching targeted tissue properties with an applicating methodology compatible with surgical conditions. The developed SALS approach to optimize nanoparticles' microstructures in bio-adhesive applies to virtually any optically transparent nanocomposite and any type of anisotropic nanoparticles. As such, this method enables rational design of bio-adhesives with enhanced anisotropic mechanical properties which can be tailored to potentially any type of tissue.
Collapse
Affiliation(s)
- Narges Mohammad Mehdipour
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Roman J Shor
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
2
|
Santos TP, Calabrese V, Boehm MW, Baier SK, Shen AQ. Flow-induced alignment of protein nanofibril dispersions. J Colloid Interface Sci 2023; 638:487-497. [PMID: 36758259 DOI: 10.1016/j.jcis.2023.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
HYPOTHESIS Protein nanofibrils (PNF) resulting from the self-assembly of proteins or peptides can present structural ordering triggered by numerous factors, including the shear flow. We hypothesize that i) depending on the contour length of the PNF and the magnitude of the shear rate applied to the PNF dispersion, they exhibit specific orientation, and ii) it is possible to predict the alignment of PNF by establishing a flow-alignment relationship. Understanding such a relationship is pivotal to improving the fundamental knowledge and application of fibril systems. EXPERIMENTS We use β-lactoglobulin PNF aqueous dispersions with different average contour lengths but equal persistence lengths. We employ simple shear-dominated microfluidic devices with state-of-the-art imaging techniques: flow-induced birefringence (FIB) and micro-particle image velocimetry (μ-PIV), to probe the effect of shear flow on PNF alignment. FINDINGS We provide an empirical relationship connecting the birefringence Δn (quantifying the extent of PNF alignment), and the Péclet number Pe (correlating the shear rate of the flow relative to the rotational diffusion of PNF) to understand the flow-alignment behavior of PNF under shear-dominated flows. Furthermore, we assess the alignment and flow profile of PNF at both high and low flow rates. The length of PNF emerges as a controlling parameter capable of modulating PNF alignment at specific shear rates. Our results shed new insights into the hydrodynamic behavior of PNF, which is highly relevant to various industrial processes involving the fibril systems.
Collapse
Affiliation(s)
- Tatiana P Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | - Stefan K Baier
- Motif FoodWorks, Inc., Boston, MA, USA; The University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
3
|
Calabrese V, Shen AQ, Haward SJ. Naturally derived colloidal rods in microfluidic flows. BIOMICROFLUIDICS 2023; 17:021301. [PMID: 37035099 PMCID: PMC10076066 DOI: 10.1063/5.0142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Naturally derived colloidal rods (CR) are promising building blocks for developing sustainable soft materials. Engineering new materials based on naturally derived CR requires an in-depth understanding of the structural dynamics and self-assembly of CR in dispersion under processing conditions. With the advancement of microfabrication techniques, many microfluidic platforms have been employed to study the structural dynamics of CR under flow. However, each microfluidic design has its pros and cons which need careful evaluation in order to fully meet the experimental goal and correctly interpret the data. We analyze recent results obtained from naturally derived CR and relevant rod-like macromolecules under microfluidic flows, with emphasis on the dynamical behavior in shear- and extensional-dominated flows. We highlight the key concepts required in order to assess and evaluate the results obtained from different CR and microfluidic platforms as a whole and to aid interconnections with neighboring fields. Finally, we identify and discuss areas of interest for future research directions.
Collapse
|
4
|
Calabrese V, György C, Haward SJ, Neal TJ, Armes SP, Shen AQ. Microstructural Dynamics and Rheology of Worm-like Diblock Copolymer Nanoparticle Dispersions under a Simple Shear and a Planar Extensional Flow. Macromolecules 2022; 55:10031-10042. [DOI: 10.1021/acs.macromol.2c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Vincenzo Calabrese
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K
| | - Simon J. Haward
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K
| | - Amy Q. Shen
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
|
6
|
Abstract
![]()
Understanding
the
hydrodynamic alignment of colloidal rods in polymer
solutions is pivotal for manufacturing structurally ordered materials.
How polymer crowding influences the flow-induced alignment of suspended
colloidal rods remains unclear when rods and polymers share similar
length scales. We tackle this problem by analyzing the alignment of
colloidal rods suspended in crowded polymer solutions and comparing
that to the case where crowding is provided by additional colloidal
rods in a pure solvent. We find that the polymer dynamics govern the
onset of shear-induced alignment of colloidal rods suspended in polymer
solutions, and the control parameter for the alignment of rods is
the Weissenberg number, quantifying the elastic response of the polymer
to an imposed flow. Moreover, we show that the increasing colloidal
alignment with the shear rate follows a universal trend that is independent
of the surrounding crowding environment. Our results indicate that
colloidal rod alignment in polymer solutions can be predicted on the
basis of the critical shear rate at which polymer coils are deformed
by the flow, aiding the synthesis and design of anisotropic materials.
Collapse
Affiliation(s)
- Vincenzo Calabrese
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Stylianos Varchanis
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Simon J. Haward
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Calabrese V, Haward SJ, Shen AQ. Effects of Shearing and Extensional Flows on the Alignment of Colloidal Rods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Vincenzo Calabrese
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Simon J. Haward
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Kamal C, Gravelle S, Botto L. Hydrodynamic slip can align thin nanoplatelets in shear flow. Nat Commun 2020; 11:2425. [PMID: 32415194 PMCID: PMC7229003 DOI: 10.1038/s41467-020-15939-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
The large-scale processing of nanomaterials such as graphene and MoS2 relies on understanding the flow behaviour of nanometrically-thin platelets suspended in liquids. Here we show, by combining non-equilibrium molecular dynamics and continuum simulations, that rigid nanoplatelets can attain a stable orientation for sufficiently strong flows. Such a stable orientation is in contradiction with the rotational motion predicted by classical colloidal hydrodynamics. This surprising effect is due to hydrodynamic slip at the liquid-solid interface and occurs when the slip length is larger than the platelet thickness; a slip length of a few nanometers may be sufficient to observe alignment. The predictions we developed by examining pure and surface-modified graphene is applicable to different solvent/2D material combinations. The emergence of a fixed orientation in a direction nearly parallel to the flow implies a slip-dependent change in several macroscopic transport properties, with potential impact on applications ranging from functional inks to nanocomposites.
Collapse
Affiliation(s)
- Catherine Kamal
- School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Simon Gravelle
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Lorenzo Botto
- School of Engineering and Material Science, Queen Mary University of London, London, UK.
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|