1
|
Dong W, Chen M, Wang C, Jia M, Zhang H, Ou J, Wei Y. Honeycomb-Shaped Supermacroporous Adsorbent Integrating Size-Exclusion and Selective Chemisorption Enables High-Efficiency Extraction and Analysis of Exosomes from Plasma. Anal Chem 2025; 97:7510-7517. [PMID: 40150816 DOI: 10.1021/acs.analchem.5c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
As cell secretions, exosomes play an important role in disease diagnosis, but the extraction of high-purity exosomes from body fluids faces great challenges. To address this issue, this work creates an excellently selective adsorbent by modifying the zwitterionic polymer carrying choline phosphate on the surface of honeycomb-shaped supermacroporous silica, which integrates chemisorption and size-exclusion principles. The results indicate that the supermacropore with a thin pore wall allows exosomes to enter and thereby be adsorbed by the polymer via specific multivalent interaction and, meanwhile, excludes large cell debris and microvesicles. Moreover, the amphiphilic polymer can inhibit the adsorption of coexisting proteins. Taking advantage of these properties, the adsorbent can extract higher purity exosomes in a simpler way over "gold standard" ultracentrifugation and normal adsorbents. Furthermore, the in situ lysis of adsorbed exosomes simplifies the subsequent analysis and enhances the sensitivity. Consequently, 422 proteins are identified in the exosomes extracted from healthy human plasma, which is higher than that obtained by ultracentrifugation. For plasma from colorectal cancer patients, 62 upregulated and 165 downregulated proteins are identified and can be used as potential biomarkers. In conclusion, the adsorbent can serve as a platform for the high-efficiency extraction of exosomes in clinical diagnostic research.
Collapse
Affiliation(s)
- Wenzhuo Dong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chenyang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Mengqian Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Junjie Ou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
2
|
Komiya T, Watanabe I, Goseki R, Kobayashi M. Synthesis of Arsenocholine-Type Polycation Brush and Its Hydration Structure in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39813413 DOI: 10.1021/acs.langmuir.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations. A poly(MTAsB) brush was also prepared on a silicon substrate to investigate its swelling structure in aqueous salt solution by scanning probe microscopy and neutron reflectivity measurements. The brush chains adopted a relatively extended conformation in pure water because of the Coulombic repulsion among the arsenic cation groups of the polyelectrolyte, while the brush formed a collapsed structure in aqueous solutions of Hofmeister series anions as a result of the screening effect by salt ions. In particular, thiocyanate ions induced a significant reduction in the swollen thickness of the brush, probably caused by the attractive interaction between arsenic cations and chaotropic thiocyanate ions. The salt concentration dependency of the poly(MTAsB) brush was similar to that of the ammonium-cation-type polyelectrolyte brushes.
Collapse
Affiliation(s)
- Takumi Komiya
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Itsuki Watanabe
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Raita Goseki
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
3
|
Lu M, Cheng N. Experimental and computational techniques to investigate the protein resistance of zwitterionic polymers. J Mater Chem B 2024; 13:103-116. [PMID: 39540623 DOI: 10.1039/d4tb01782j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Most surfaces undergo non-specific protein adsorption upon direct contact with protein-containing environments, resulting in the formation of a protein corona, and the nature and composition of the corona affect the properties of the material. Zwitterionic polymers have oppositely charged groups in their repeating units, which facilitate the formation of a hydration layer on the surface through electrostatic interactions. The hydration layer possesses a strong water-binding ability and can prevent protein adsorption. Therefore, the hydration effect of zwitterionic polymers has become a research focus, and many researchers have investigated this mechanism using experimental and computational methods. This paper reviews the experimental techniques and simulation methods to study the hydration effect of zwitterionic polymers and the advantages and disadvantages of different techniques are discussed.
Collapse
Affiliation(s)
- Mengyu Lu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
4
|
Li Q, Zhang Z, Wang F, Wang X, Zhan S, Yang X, Xu C, Liu D. Reversible zwitterionic coordination enables rapid, high-yield, and high-purity isolation of extracellular vesicles from biofluids. SCIENCE ADVANCES 2023; 9:eadf4568. [PMID: 37058564 PMCID: PMC10104463 DOI: 10.1126/sciadv.adf4568] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) hold great clinical value as promising diagnostic biomarkers and therapeutic agents. This field, however, is hindered by technical challenges in the isolation of EVs from biofluids for downstream purposes. We here report a rapid (<30 min) isolation method for EV extraction from diverse biofluids with yield and purity exceeding 90%. These high performances are ascribed to the reversible zwitterionic coordination between the phosphatidylcholine (PC) on EV membranes and the "PC-inverse" choline phosphate (CP) decorated on magnetic beads. By coupling this isolation method with proteomics, a set of differentially expressed proteins on the EVs were identified as potential colon cancer biomarkers. Last, we demonstrated that the EVs in various clinically relevant biofluids, such as blood serum, urine, and saliva, can also be isolated efficiently, outperforming the conventional approaches in terms of simplicity, speed, yield, and purity.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fengchao Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Saisong Zhan
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Wu K, Li Q, Yao C, Yang D, Liu D. Trojan Horse Delivery of Spherical Nucleic Acid Probes into the Cytoplasm for High-Fidelity Imaging of MicroRNAs. Anal Chem 2022; 94:10942-10948. [PMID: 35854635 DOI: 10.1021/acs.analchem.2c00675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a Trojan horse strategy to efficiently deliver the spherical nucleic acid probes (namely, nanoflares) into the cytoplasm for microRNA (miRNA) imaging with high fidelity, breaking through the cytoplasmic transport dilemma of RNA probes in living cells. The nanoflare is encapsulated into a "Trojan horse" consisting of zwitterionic choline phosphates (CPs) and acid-degradable crosslinkers; the former effectively promotes cell uptake and the latter triggers instantaneous liberation of the nanoflare probes from the lysosome to the cytoplasm. The exposed nanoflares in the cytoplasm can be lightened up by the target miRNAs specifically. Compared with the conventional nanoflares as well as the improved ones in previous reports, the "Trojan horse" nanoflares avoid nuclease degradation and thiol displacement during the delivery process, providing unprecedentedly high accuracy for intracellular miRNA imaging.
Collapse
Affiliation(s)
- Kefeng Wu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.,State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Shiomoto S, Inoue K, Higuchi H, Nishimura SN, Takaba H, Tanaka M, Kobayashi M. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers. Biomacromolecules 2022; 23:2999-3008. [PMID: 35736642 DOI: 10.1021/acs.biomac.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zwitterionic methacrylate polymers with either choline phosphate (CP) (poly(MCP)) or phosphorylcholine (PC) (poly(MPC)) side groups were analyzed to characterize the bound hydration water molecules as nonfreezing water (NFW), intermediate water (IW), or free water (FW). This characterization was carried out by differential scanning calorimetry (DSC) of polymer/water systems, and the enthalpy changes of cold crystallization and melting were determined. The electron pair orientation of CP is opposite to that of PC, and the former binds the alkyl terminal groups at the phosphate esters. The numbers of NFW and IW molecules per monomer unit of poly(MCP) with an isopropyl terminal group were estimated to be 10.7 and 11.3 mol/mol, respectively, which were slightly greater than those of the poly(MCP) bearing an ethyl terminal group. More NFW and IW molecules hydrated the phosphobetaine polyzwitterions, poly(MCP) and poly(MPC), compared with carboxybetaine and sulfobetaine polymers. Moreover, the hydration states of polyelectrolytes were compared with the zwitterionic polymers. Finally, we discuss the relationship between the amount of hydration water and bio-inert properties.
Collapse
Affiliation(s)
- Shohei Shiomoto
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Kaito Inoue
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hayato Higuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromitsu Takaba
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
7
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
8
|
Yang Z, Zhao J, Emrick T. Functional Polymer Zwitterions as Reactive Surfactants for Nanoparticle Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21898-21904. [PMID: 33942613 DOI: 10.1021/acsami.1c05955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe the synthesis of sulfothetin (ST)-containing polymer zwitterions and their use as polymer surfactants for stabilizing emulsion droplets and for capturing and transporting nanoparticles (NPs) through a flowing aqueous fluid. In contrast to conventional zwitterions, which are chemically inert, the multifunctional ST-containing copolymers we describe both participate in droplet stabilization and embed reactive functionality directly into the zwitterionic framework. Advantageously including these ST zwitterions in phosphorylcholine (PC)-containing copolymers proved particularly useful for producing surfactants that contributed characteristics of droplet stabilization and interfacial reactivity. This was demonstrated by NP pickup, or "capture", experiments that were performed by circulating ST-coated emulsion droplets across a substrate, in a flow cell, containing amine-functionalized silica NPs. The resultant NP adherence to the fluid-fluid interface of the droplets hinged on the available reactivity of both the electrophilic (from ST) and nucleophilic (from the NPs) components as well as the solution pH and extent of amine functionality on the NPs.
Collapse
Affiliation(s)
- Zhefei Yang
- Polymer Science & Engineering Department Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst 01003, Massachusetts, United States
| | - Jing Zhao
- Polymer Science & Engineering Department Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst 01003, Massachusetts, United States
| | - Todd Emrick
- Polymer Science & Engineering Department Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst 01003, Massachusetts, United States
| |
Collapse
|
9
|
Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021; 22:1494-1508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Onur Özcan
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Dirk Schanzenbach
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - André Laschewsky
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Koc J, Schardt L, Nolte K, Beyer C, Eckhard T, Schwiderowski P, Clarke JL, Finlay JA, Clare AS, Muhler M, Laschewsky A, Rosenhahn A. Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50953-50961. [PMID: 33112127 DOI: 10.1021/acsami.0c11580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While zwitterionic interfaces are known for their excellent low-fouling properties, the underlying molecular principles are still under debate. In particular, the role of the zwitterion orientation at the interface has been discussed recently. For elucidation of the effect of this parameter, self-assembled monolayers (SAMs) on gold were prepared from stoichiometric mixtures of oppositely charged alkyl thiols bearing either a quaternary ammonium or a carboxylate moiety. The alkyl chain length of the cationic component (11-mercaptoundecyl)-N,N,N-trimethylammonium, which controls the distance of the positively charged end group from the substrate's surface, was kept constant. In contrast, the anionic component and, correspondingly, the distance of the negatively charged carboxylate groups from the surface was varied by changing the alkyl chain length in the thiol molecules from 7 (8-mercaptooctanoic acid) to 11 (12-mercaptododecanoic acid) to 15 (16-mercaptohexadecanoic acid). In this way, the charge neutrality of the coating was maintained, but the charged groups exposed at the interface to water were varied, and thus, the orientation of the dipoles in the SAMs was altered. In model biofouling studies, protein adsorption, diatom accumulation, and the settlement of zoospores were all affected by the altered charge distribution. This demonstrates the importance of the dipole orientation in mixed-charged SAMs for their inertness to nonspecific protein adsorption and the accumulation of marine organisms. Overall, biofouling was lowest when both the anionic and the cationic groups were placed at the same distance from the substrate's surface.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Kim Nolte
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Cindy Beyer
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Till Eckhard
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Bochum 44801, Germany
| | | | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Andre Laschewsky
- Institut für Chemie, Universität Potsdam, Potsdam 14469, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam 14476, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
11
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|
12
|
Mukai M, Ihara D, Chu CW, Cheng CH, Takahara A. Synthesis and Hydration Behavior of a Hydrolysis-Resistant Quasi-Choline Phosphate Zwitterionic Polymer. Biomacromolecules 2020; 21:2125-2131. [DOI: 10.1021/acs.biomac.0c00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masaru Mukai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Ihara
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chien-Wei Chu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chao-Hung Cheng
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Mukai M, Cheng CH, Ma W, Chin M, Lin CH, Luo SC, Takahara A. Synthesis of a conductive polymer thin film having a choline phosphate side group and its bioadhesive properties. Chem Commun (Camb) 2020; 56:2691-2694. [DOI: 10.1039/c9cc09949b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A conductive polymer thin film having choline phosphate as the side group was prepared. The polymer thin film can prevent bovine serum albumin binding while present nice fibroblast cell adhesion.
Collapse
Affiliation(s)
- Masaru Mukai
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Nishi-ku
- Japan
| | - Chao-Hung Cheng
- Graduate School of Engineering
- Kyushu University
- Nishi-ku
- Japan
| | - Wei Ma
- International Institute for Carbon-Neutral Energy Research (WPI-I2CER)
- Kyushu University
- Nishi-ku
- Japan
| | - Mi Chin
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chia-Hsin Lin
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Nishi-ku
- Japan
- Graduate School of Engineering
| |
Collapse
|
14
|
Schönemann E, Koc J, Aldred N, Clare AS, Laschewsky A, Rosenhahn A, Wischerhoff E. Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties. Macromol Rapid Commun 2019; 41:e1900447. [DOI: 10.1002/marc.201900447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Eric Schönemann
- Department of Chemistry Universität Potsdam Karl‐Liebknecht‐Str. 24‐25 14476 Potsdam‐Golm Germany
| | - Julian Koc
- Analytical Chemistry ‐ Biointerfaces Ruhr University Bochum 44780 Bochum Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony S. Clare
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - André Laschewsky
- Department of Chemistry Universität Potsdam Karl‐Liebknecht‐Str. 24‐25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute of Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Axel Rosenhahn
- Analytical Chemistry ‐ Biointerfaces Ruhr University Bochum 44780 Bochum Germany
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP 14476 Potsdam‐Golm Germany
| |
Collapse
|
15
|
Wu JG, Chen JH, Liu KT, Luo SC. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21294-21307. [PMID: 31120722 DOI: 10.1021/acsami.9b04924] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Conducting polymers are considered to be favorable electrode materials for implanted biosensors and bioelectronics, because their mechanical properties are similar to those of biological tissues such as nerve and brain tissues. However, one of the primary challenges for implanted devices is to prevent the unwanted protein adhesion or cell binding within biological fluids. The nonspecific adsorption generally causes the malfunction of implanted devices, which is problematic for long-term applications. When responding to the requirements of solving the problems caused by nonspecific adsorption, an increasing number of studies on antifouling conducting polymers has been recently published. In this review, synthetic strategies for preparing antifouling conducting polymers, including direct synthesis of functional monomers and post-functionalization, are introduced. The applications of antifouling conducting polymers in modern biomedical applications are particularly highlighted. This paper presents focuses on the features of antifouling conducting polymers and the challenges of modern biomedical applications.
Collapse
Affiliation(s)
- Jhih-Guang Wu
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Jie-Hao Chen
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Kuan-Ting Liu
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Advanced Research Center for Green Materials Science and Technology , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
16
|
Mukai M, Higaki Y, Hirai T, Takahara A. Separation of Endo-cyclic 2-Methacryloyloxyethyl Choline Phosphate by Anion Exchange Approach. CHEM LETT 2018. [DOI: 10.1246/cl.180787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Masaru Mukai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoyasu Hirai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|