1
|
Sun Q, Wang Y, Ren H, Hou S, Niu K, Wang L, Liu S, Ye J, Cui C, Qi X. Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Adv Healthc Mater 2025:e2405124. [PMID: 40109122 DOI: 10.1002/adhm.202405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
In the tumor immunosuppressive microenvironment (TIME), regulatory T cells (Tregs) critically suppress anticancer immunity, characterized by high expression of glucocorticoid-induced TNF receptor (GITR) expression and sensitivity to reactive oxygen species (ROS). This study develops a near-infrared (NIR)-responsive hollow nanocomplex (HPDA-OPC/DTA-1) using hollow polydopamine nanoparticles (HPDA), endowed with thermogenic and antioxidative properties, specifically targeting Tregs to activate antitumor immunity. The GITR agonist DTA-1, combined with the antioxidant oligomeric proanthocyanidins (OPC) to deplete Tregs. However, Tregs depletion alone may not sufficiently trigger robust immune responses. The HPDA nanocarrier enhances thermogenic and antioxidative capacities, supporting photothermal immunotherapy. The HPDA-OPC/DTA-1 demonstrates NIR responsiveness for both photothermal therapy (PTT) and OPC release, while facilitating Tregs depletion via DTA-1 and reducing ROS levels, thereby reviving antitumor immunity. Notably, intratumoral CD4+CD25+FOXP3+ Tregs exhibited a 4.08-fold reduction alongside a 49.11-fold increase in CD8+ T cells/Tregs relative to controls. Enhanced dendritic cells (DCs) maturation and immunogenic cell death (ICD) induction further demonstrate that HPDA-OPC/DTA-1 alleviates immunosuppression and activates antitumor immunity. Ultimately, the observed tumor inhibitory effect (tumor volume: 6.75-fold versus the control) and an over 80% survival rate highlight the therapeutic potential of combining Tregs targeting, antioxidant strategy, and photothermal immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Qi Sun
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Yuyan Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Hetian Ren
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Shiyuan Hou
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Kaiyi Niu
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Liu Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Siyu Liu
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Jingyi Ye
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Ria T, Roy R, Mandal US, Sk UH. Prospects of nano-theranostic approaches against breast and cervical cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189227. [PMID: 39612962 DOI: 10.1016/j.bbcan.2024.189227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The bottleneck on therapeutics and diagnostics is removed by an alternate approach known as theranostics which combines both therapeutics and diagnostics within a single platform. Due to this "all in one" nature of theranostics, it is now extensively applied in the medicinal field mainly in cancer treatment over the conventional therapy. Recently, FDA approval of lutetium 177 (177Lu) DOTATATE and 177Lu-PSMA-based radionuclide theranostics are clinically used and very few theranostics specific to breast cancer are in clinical trials. In this review, we are willing to draw special attention to the application of theranostics in the most relevant cancers in women, the breast and the cervical as these cancers affect women harshly but talked very silently due to the social restrictions and discriminations mainly in rural areas of developing and under developing countries. This approach not only combines therapeutics and diagnostics but targeting moieties can also be accommodated for the precise medication. Herein, our main objective is to enlighten the broader aspects of different kinds of theranostic devices based on radioisotopes, nanoparticles, graphene quantum dots, dendrimers and their fruitful application against breast and cervical cancer. The development of synthetic nano-theranostics was reported by accommodating therapeutic drugs, imaging probes and targeting ligands through conjugation or encapsulation. The imaging modalities like optical fluorescence, photosensitizers and radiotracers are used to get the diagnostic images through NIR, PET, MRI and CT/SPECT to detect the progress of cancer non-invasively and also at the same time targeting ligands such as antibodies, proteins and peptides in attachment with the theranostics enhances the therapeutic efficacy in addition to the clarity in diagnostics. The applications of theranostics from the last decade with their present scenario in clinics and future perspectives, as well as the pitfalls with the hurdles that still leave questions to rethink from the root are also been discussed in this review.
Collapse
Affiliation(s)
- Tasnim Ria
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India
| | - Rubi Roy
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India
| | - Uma Sankar Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
3
|
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, Liao Y. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol 2024; 265:130960. [PMID: 38518941 DOI: 10.1016/j.ijbiomac.2024.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Tumors remain one of the major threats to public health and there is an urgent need to design new pharmaceutical agents for their diagnosis and treatment. In recent years, due to the rapid development of nanotechnology, biotechnology, catalytic science, and theoretical computing, subtlety has gradually made great progress in research related to tumor diagnosis and treatment. Compared to conventional drugs, enzymes can improve drug distribution and enhance drug enrichment at the tumor site, thereby reducing drug side effects and enhancing drug efficacy. Nanozymes can also be used as tumor tracking imaging agents to reshape the tumor microenvironment, providing a versatile platform for the diagnosis and treatment of malignancies. In this paper, we review the current status of research on enzymes in oncology and analyze novel oncology therapeutic approaches and related mechanisms. To date, a large number of nanomaterials, such as noble metal nanomaterials, nonmetallic nanomaterials, and carbon-based nanomaterials, have been shown to be able to function like natural enzymes, particularly with significant advantages in tumor therapy. In light of this, the authors in this review have systematically summarized and evaluated the construction, enzymatic activity, and their characteristics of nanozymes with respect to current modalities of tumor treatment. In addition, the application and research progress of different types of nicknames and their features in recent years are summarized in detail. We conclude with a summary and outlook on the study of nanozymes in tumor diagnosis and treatment. It is hoped that this review will inspire researchers in the fields of nanotechnology, chemistry, biology, materials science and theoretical computing, and contribute to the development of nano-enzymology.
Collapse
Affiliation(s)
- Gaihua He
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Chao Mei
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Chenbo Chen
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiao Liu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Jiaxuan Wu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Yue Deng
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ye Liao
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Lv Q, Zhang Y, Yang R, Dai Y, Lin Y, Sun K, Xu H, Tao K. Photoacoustic Imaging Endometriosis Lesions with Nanoparticulate Polydopamine as a Contrast Agent. Adv Healthc Mater 2024; 13:e2302175. [PMID: 37742067 DOI: 10.1002/adhm.202302175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Endometriosis (EM) is a prevalent and debilitating gynecological disorder primarily affecting women of reproductive age. The diagnosis of EM is historically hampered by delays, owing to the absence of reliable diagnostic and monitoring techniques. Herein, it is reported that photoacoustic imaging can be a noninvasive modality for deep-seated EM by employing a hyaluronic-acid-modified polydopamine (PDA@HA) nanoparticle as the contrast agent. The PDA@HA nanoparticles exhibit inherent absorption and photothermal effects when exposed to near-infrared light, proficiently converting thermal energy into sound waves. Leveraging the targeting properties of HA, distinct photoacoustic signals emanating from the periphery of orthotopic EM lesions are observed. These findings are corroborated through anatomical observations and in vivo experiments involving mice with green fluorescent protein-labeled EM lesions. Moreover, the changes in photoacoustic intensity over a 24 h period reflect the dynamic evolution of PDA@HA nanoparticle biodistribution. Through the utilization of a photoacoustic ultrasound modality, in vivo assessments of EM lesion volumes are conducted. This innovative approach not only facilitates real-time monitoring of the therapeutic kinetics of candidate drugs but also obviates the need for the sacrifice of experimental mice. As such, this study presents a promising avenue for enhancing the diagnosis and drug-screening processes of EM.
Collapse
Affiliation(s)
- Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingfan Dai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Pan C, Wang L, Zhang M, Li J, Liu J, Liu J. In Situ Polymerization-Mediated Antigen Presentation. J Am Chem Soc 2023. [PMID: 37262440 DOI: 10.1021/jacs.3c02682] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activating antigen-presenting cells is essential to generate adaptive immunity, while the efficacy of conventional activation strategies remains unsatisfactory due to suboptimal antigen-specific priming. Here, in situ polymerization-mediated antigen presentation (IPAP) is described, in which antigen-loaded nanovaccines are spontaneously formed and efficiently anchored onto the surface of dendritic cells in vivo through co-deposition with dopamine. The resulting chemically bound nanovaccines can promote antigen presentation by elevating macropinocytosis-based cell uptake and reducing lysosome-related antigen degradation. IPAP is able to prolong the duration of antigen reservation in the injection site and enhance subsequent accumulation in the draining lymph nodes, thereby eliciting robust antigen-specific cellular and humoral immune responses. IPAP is also applicable for different antigens and capable of circumventing the disadvantages of complicated preparation and purification. By implementation with ovalbumin, IPAP induces a significant protective immunity against ovalbumin-overexpressing tumor cell challenge in a prophylactic murine model. The use of the SARS-CoV-2 Spike protein S1 subunit also remarkably increases the production of S1-specific immunoglobulin G in mice. IPAP offers a unique strategy for stimulating antigen-presenting cells to boost antigen-specific adaptive responses and proposes a facile yet versatile method for immunization against various diseases.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
7
|
Li H, Lin L, Yan R, Chen Z, Wen X, Zeng X, Tao C. Multi-functional Fe3O4@HMPDA@G5-Au core-releasable satellite nano drug carriers for multimodal treatment of tumor cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chen C, Tan Y, Xu T, Sun Y, Zhao S, Ouyang Y, Chen Y, He L, Liu X, Liu H. Sorafenib-Loaded Copper Peroxide Nanoparticles with Redox Balance Disrupting Capacity for Enhanced Chemodynamic Therapy against Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12307-12315. [PMID: 36154182 DOI: 10.1021/acs.langmuir.2c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemodynamic therapy (CDT) is a promising hydroxyl radical (•OH)-mediated tumor therapeutic method with desirable tumor specificity and minimal side effects. However, the efficiency of CDT is restricted by the pH condition, insufficient H2O2 level, and overexpressed reductive glutathione (GSH), making it challenging to solve these problems simultaneously to improve the efficacy of CDT. Herein, a kind of polyvinylpyrrolidone-stabilized, sorafenib-loaded copper peroxide (CuO2-PVP-SRF) nanoparticle (NPs) was designed and developed for enhanced CDT against tumor cells through the synergetic pH-independent Fenton-like, H2O2 self-supplying, and GSH depletion strategy. The prepared CuO2-PVP-SRF NPs can be uptaken by 4T1 cells to specifically release Cu2+, H2O2, and SRF under acidic conditions. The intracellular GSH can be depleted by SRF-induced system xc- dysfunction and Cu2+-participated redox reaction, causing the inactivation of GPX4 and generating Cu+. A great amount of •OH was produced in this reducing capacity-disrupted condition by the Cu+-mediated Fenton-like reaction, causing cell apoptosis and lipid hydroperoxide accumulation-induced ferroptosis. They display an excellent 4T1 cell killing outcome through the improved •OH production capacity. The CuO2-PVP-SRF NPs display elevated therapeutic efficiency of CDT and show good promise in further tumor treatment applications.
Collapse
Affiliation(s)
- Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yixin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yihao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Liang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Construction of MPDA@IR780 nano drug carriers and photothermal therapy of tumor cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Du Z, Ma R, Chen S, Fan H, Heng Y, Yan T, Alimu G, Zhu L, Zhang X, Alifu N, Ma C. A highly efficient polydopamine encapsulated clinical ICG theranostic nanoplatform for enhanced photothermal therapy of cervical cancer. NANOSCALE ADVANCES 2022; 4:4016-4024. [PMID: 36133329 PMCID: PMC9470054 DOI: 10.1039/d2na00341d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) is a safe and efficient anti-tumor treatment. A photothermal agent (PTA) with good biocompatibility and strong photothermal properties is of great importance for PTT. In this study, near-infrared (NIR) excitable clinical indocyanine green (ICG) was utilized as a PTA and further encapsulated by another PTA polydopamine (PDA) to form highly stable and efficient ICG@PDA nanoparticles (NPs). Then the ICG@PDA NPs were modified with methoxy polyethylene glycol amine (mPEG2000-NH2) to form biocompatible ICG@PDA@PEG NPs. ICG@PDA@PEG NPs showed good water solubility and a spherical shape with an average size of 140 nm. Furthermore, the photothermal properties of ICG@PDA@PEG NPs were studied and excellent photothermal performance with a photothermal conversion efficiency of 43.7% under 808 nm laser irradiation was achieved. Then, the PTT properties of ICG@PDA@PEG NPs were confirmed on HeLa cells with an efficiency of 86.1%. Meanwhile, the in vivo biocompatibility and toxicity of ICG@PDA@PEG NPs were evaluated. No apparent in vivo toxicity was observed in 24 hours and 7 days. Next, in vivo PTT analysis was conducted for cervical tumor-bearing nude mice under 808 nm laser excitation. It showed a good anti-tumor effect in vivo. Thus, ICG@PDA@PEG NPs exhibited great potential for safe and efficient photothermal therapy in anti-tumor therapy.
Collapse
Affiliation(s)
- Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Youqiang Heng
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| | - Ting Yan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Gulinigaer Alimu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011 China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 China
| |
Collapse
|
11
|
Yuan X, Zhao X, Lin Y, Su Z. Polydopamine-Based Nanoparticles for an Antibiofilm Platform: Influence of Size and Surface Charge on Their Penetration and Accumulation in S. aureus Biofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10662-10671. [PMID: 35983665 DOI: 10.1021/acs.langmuir.2c01650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various functional polydopamine (PDA) nanoparticles have been developed to treat biofilms in recent years; however, in-depth knowledge of how the physicochemical properties of the nanoparticles impact their penetration and accumulation in biofilms is lacking. In this work, PDA nanoparticles of 15, 60, 90, and 200 nm sizes were synthesized and carboxyl, methoxy, and amine groups were introduced to the particle surface to control their surface charges, and then the penetration and accumulation of these PDA nanoparticles in S. aureus biofilms were investigated. The PDA nanoparticles of approximately 60 nm size (PDA60) showed higher penetration and accumulation abilities than nanoparticles of other sizes, and the positively charged amine groups introduced onto the surfaces of PDA60 nanoparticles were more effective than carboxyl or methoxy groups in promoting the interactions of the nanoparticles with the biofilm. The PDA60 nanoparticles with amine surface groups exhibited good photothermal properties, and confocal laser scanning microscopy revealed that they were able to accumulate in the biofilm in significant amounts, which upon irradiation with a laser of 808 nm wavelength showed a high bactericidal rate (97.1%) against the biofilm. The findings of this work provide guidance for the design and development of nanoparticles for antibiofilm application.
Collapse
Affiliation(s)
- Xiaodie Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
12
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
13
|
Zhang Q, Wang J, Xu L, Lu S, Yang H, Duan Y, Yang Q, Qiu M, Chen C, Zhao S, Liu X, Liu H. PEGylated
copper(
II
)‐chelated polydopamine nanocomposites for photothermal‐enhanced chemodynamic therapy against tumor cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.51172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiuye Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Jingjing Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering College of Engineering, Peking University Beijing China
| | - Luen Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Shi‐Yu Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering College of Engineering, Peking University Beijing China
| | - Huawei Yang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering College of Engineering, Peking University Beijing China
| | - Yifan Duan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Qiang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Mengfan Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Xiaohong Liu
- Chongqing Youth Vocational and Technical College Chongqing China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| |
Collapse
|
14
|
Lin K, Gan Y, Zhu P, Li S, Lin C, Yu S, Zhao S, Shi J, Li R, Yuan J. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. NANOTECHNOLOGY 2021; 32:285602. [PMID: 33799309 DOI: 10.1088/1361-6528/abf4a9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Various polydopamine (PDA) nanospheres were synthesized by utilizing triblock copolymer Pluronic F127 and 1,3,5-trimethylbenzene (TMB) as soft templates. Precise morphology control of polydopamine nanospheres was realized from solid polydopamine nanospheres to hollow polydopamine nanospheres, mesoporous polydopamine nanospheres and hollow mesoporous polydopamine nanospheres (H-MPDANSs) by adjusting the weight ratio of TMB to F127. The inner diameter of the prepared H-MPDANSs can be controlled in the range of 50-100 nm, and the outer diameter is about 180 nm. Furthermore, the thickness of hollow mesoporous spherical shell can be adjusted by changing the amount of dopamine (DA). The H-MPDANSs have good biocompatibility, excellent photothermal properties, high drug loading capacity, and outstanding sustainable drug release properties. In addition, both NIR laser irradiation and acid pH can facilitate the controlled release of doxorubicin (DOX) from H-MPDANSs@DOX.
Collapse
Affiliation(s)
- Kunpeng Lin
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Ying Gan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Peide Zhu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Shanshan Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Chen Lin
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuling Yu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Runming Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jinfang Yuan
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
15
|
Hou X, Tao Y, Li X, Pang Y, Yang C, Jiang G, Liu Y. CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma. Int J Nanomedicine 2020; 15:10401-10416. [PMID: 33376328 PMCID: PMC7764953 DOI: 10.2147/ijn.s283515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Nanotechnology-based photodynamic therapy (PDT) is a relatively new anti-tumor strategy. However, its efficacy is limited by the hypoxic state in the tumor microenvironment. In the present study, a poly(lactic-co-glycolic acid) (PLGA) nanoparticle that encapsulated both IR820 and catalase (CAT) was developed to enhance anti-tumor therapy. Materials and Methods HA-PLGA-CAT-IR820 nanoparticles (HCINPs) were fabricated via a double emulsion solvent evaporation method. Dynamic light scattering (DLS), transmission electron microscopy (TEM), laser scanning confocal microscopy, and an ultraviolet spectrophotometer were used to identify and characterize the nanoparticles. The stability of the nanoparticle was investigated by DLS via monitoring the sizes and polydispersity indexes (PDIs) in water, PBS, DMEM, and DMEM+10%FBS. Oxygen generation measurement was carried out via visualizing the oxygen bubbles with ultrasound imaging system and an optical microscope. Inverted fluorescence microscopy and flow cytometry were used to measure the uptake and targeting effect of the fluorescent-labeled nanoparticles. The live-dead method and tumor-bearing mouse models were applied to study the HCINP-induced enhanced PDT effect. Results The results showed that the HCINPs could selectively target melanoma cells with high expression of CD44, and generated oxygen by catalyzing H2O2, which increased the amount of singlet oxygen, ultimately inhibiting tumor growth significantly. Conclusion The present study presents a novel nanoplatform for melanoma treatment.
Collapse
Affiliation(s)
- Xiaoyang Hou
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yingkai Tao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Xinxin Li
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yanyu Pang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yanqun Liu
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
16
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
17
|
Melanin-based nanomaterials: The promising nanoplatforms for cancer diagnosis and therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102211. [PMID: 32320736 DOI: 10.1016/j.nano.2020.102211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023]
Abstract
Melanin-based nanoplatforms are biocompatible nanomaterials with a variety of unique physicochemical properties such as strong photothermal conversion ability, excellent drug binding capacity, strong metal chelation capacity, high chemical reactivity and versatile adhesion ability. These innate talents not only make melanin-based nanoplatforms be an inborn theranostic nanoagent for photoacoustic imaging-guided photothermal therapy of cancers, but also enable them to be conveniently transferred into cancer-targeting drug delivery systems and multimodality imaging nanoprobes. Due to the intriguing properties, melanin-based nanoplatforms have attracted much attention in investigations of cancer diagnosis and therapy. This review provides an overview of recent research advances in applications of melanin-based nanoplatforms in the fields of cancer diagnosis and therapy including cancer photothermal therapy, anticancer drug delivery, cancer-specific multimodal imaging and theranostics, etc. The remaining challenges and prospects of melanin-based nanoplatforms in biomedical applications are discussed at the end of this review.
Collapse
|
18
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
19
|
Zhang J, An X, Zheng Y, Chen Y, Wu C, Wang S. Injectable Ovalbumin-Based Composite Implant for Photothermal Tumor Therapy. Chembiochem 2020; 21:865-873. [PMID: 31613042 DOI: 10.1002/cbic.201900556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Polymeric hydrogels with three-dimensional network structures have found tremendous applications in biomedicine. Herein, we report the synthesis of a multifunctional implant based on ovalbumin (OVA) as a carrier capable of synergistically delivering a photothermal transducing agent (polydopamine, PDA) to tumors. The formation of PDA was achieved by utilizing the basicity of OVA, whereas the formation of the hydrogel implant was achieved through the in vitro/in vivo near-infrared (NIR) laser-induced hyperthermia of PDA. The as-prepared PDA@OVA implant exhibits high photothermal conversion efficiency (38.7 %). Once implanted in vivo, the OVA-based implant shows great versatility in the treatment of malignant tumors. Furthermore, a chemotherapeutic (doxorubicin, DOX) and a contrast agent (iohexol), dispersed in the OVA solution in advance, can also be firmly entrapped in the hydrogel along with the hydrogel formation. It is anticipated that the multifunctional OVA-based implant, not showing any obvious toxicity to healthy tissue, could be a promising system for synergistic cancer treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Xiao An
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China
| | - Yuting Zheng
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Yongkang Chen
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Chenyao Wu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| |
Collapse
|
20
|
Li W, Hu J, Wang J, Tang W, Yang W, Liu Y, Li R, Liu H. Polydopamine‐mediated polypyrrole/doxorubicin nanocomplex for chemotherapy‐enhanced photothermal therapy in both NIR‐I and NIR‐II biowindows against tumor cells. J Appl Polym Sci 2020. [DOI: 10.1002/app.49239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenchao Li
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Jie Hu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Jingjing Wang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Wei Tang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Wenting Yang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Yanqing Liu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Rui Li
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Hui Liu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| |
Collapse
|
21
|
Wu H, Wang W, Zhang Z, Li J, Zhao J, Liu Y, Wu C, Huang M, Li Y, Wang S. Synthesis of a Clay-Based Nanoagent for Photonanomedicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:390-399. [PMID: 31800211 DOI: 10.1021/acsami.9b19930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photo-induced cancer therapies, mainly including photothermal therapy (PTT) and photodynamic therapy (PDT), have attracted numerous attentions owing to the high selectivity, convenience, and few side effects. However, single PTT usually requires high laser power density, and single PDT usually needs a high photosensitizer dosage. Herein, a kind of composite nanocarrier based on clay (laponite)-polypyrrole (LP) nanodisks was synthesized via the in situ polymerization of pyrrole in the interlayer space of laponite. LP composite nanodisks were then coated with polyvinylpyrrolidone (PVP) to form the LP-PVP (LPP) composite nanodisks which show an excellent colloidal stability and in vitro and in vivo biocompatibility. The interlayer space of LPP can be further used for the loading of Chlorin e6 (Ce6), with an ultrahigh loading capacity of about 89.2%. Furthermore, the LPP nanocarrier can enhance the PDT effect of Ce6 under the irradiation of a 660 nm laser, through enhancing its solubility and cellular uptake amount. Besides, it was found that LPP nanodisks exhibit a more outstanding photothermal performance under a 980 nm near-infrared laser (NIR) than a 808 nm NIR laser, with the photothermal conversion efficiency of 45.7 and 27.7%, respectively. The in vitro and in vivo tumor therapy results evidently confirm that the Ce6-loaded LPP nanodisks have a combined tumor PTT and PDT effect, which can significantly suppress the tumor malignant proliferation.
Collapse
Affiliation(s)
- Huan Wu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Weifan Wang
- Department of Allergy and Immunology, Shanghai Children's Medical Center, School of Medicine , Shanghai Jiao Tong University , No. 1678 Dongfang Road , Shanghai 200127 , China
| | - Zhilun Zhang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Jinfeng Li
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Jiayan Zhao
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Yiyun Liu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Chenyao Wu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Mingxian Huang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Shige Wang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| |
Collapse
|
22
|
Shang B, Zhang X, Ji R, Wang Y, Hu H, Peng B, Deng Z. Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110174. [DOI: 10.1016/j.msec.2019.110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/27/2023]
|
23
|
Park J, Moon H, Hong S. Recent advances in melanin-like nanomaterials in biomedical applications: a mini review. Biomater Res 2019; 23:24. [PMID: 31827881 PMCID: PMC6889561 DOI: 10.1186/s40824-019-0175-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Melanins are a group of biopigments in microorganisms that generate a wide range of colorants. Due to their multifunctionality, including ultraviolet protection, radical scavenging, and photothermal conversion, in addition to their intrinsic biocompatibility, natural melanins and synthetic melanin-like nanomaterials have been suggested as novel nano-bio platforms in biomedical applications. MAIN BODY Recent approaches in the synthesis of melanin-like nanomaterials and their biomedical applications have briefly been reviewed. Melanin-like nanomaterials have been suggested as endogenous chromophores for photoacoustic imaging and radical scavengers for the treatment of inflammatory diseases. The photothermal conversion ability of these materials under near-infrared irradiation allows hyperthermia-mediated cancer treatments, and their intrinsic fluorescence can be an indicator in biosensing applications. Furthermore, catechol-rich melanin and melanin-like nanomaterials possess a versatile affinity for various functional organic and inorganic additives, allowing the design of multifunctional hybrid nanomaterials that expand their range of applications in bioimaging, therapy, theranostics, and biosensing. CONCLUSION Melanin-like natural and synthetic nanomaterials have emerged; however, the under-elucidated chemical structures of these materials are still a major obstacle to the construction of novel nanomaterials through bottom-up approaches and tuning the material properties at the molecular level. Further advancements in melanin-based medical applications can be achieved with the incorporation of next-generation chemical and molecular analytical tools.
Collapse
Affiliation(s)
- Jihyo Park
- Department of Emerging Materials Science, DGIST, Daegu, 42988 South Korea
| | - Haeram Moon
- Department of Emerging Materials Science, DGIST, Daegu, 42988 South Korea
| | - Seonki Hong
- Department of Emerging Materials Science, DGIST, Daegu, 42988 South Korea
| |
Collapse
|
24
|
Integration of cascade delivery and tumor hypoxia modulating capacities in core-releasable satellite nanovehicles to enhance tumor chemotherapy. Biomaterials 2019; 223:119465. [DOI: 10.1016/j.biomaterials.2019.119465] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
|
25
|
Tran HQ, Batul R, Bhave M, Yu A. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy. Biotechnol J 2019; 14:e1900080. [DOI: 10.1002/biot.201900080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Huy Q. Tran
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Rahila Batul
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| |
Collapse
|
26
|
Liu Y, Yu Q, Chang J, Wu C. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. NANOSCALE 2019; 11:13678-13708. [PMID: 31292580 DOI: 10.1039/c9nr02955a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanobiomaterials have attracted tremendous attention in the biomedical field. Especially in the past few years, a large number of low dimensional nanobiomaterials, including 0D nanostructures, 1D nanotubes and 2D nanosheets, were employed for tumor therapy due to their optically triggered tumor therapy effects and drug loading capacities. However, these low dimensional nanobiomaterials cannot support cell adhesion and possess poor tissue regeneration ability, thus they are not suitable for application in regenerative medicine. Three dimensional (3D) nanofiber scaffolds have attracted extensive attention in tissue regeneration, including bone, skin, nerve and cardiac tissues, due to their similar extracellular matrix structures. Additionally, many 3D scaffolds displayed bone and cartilage regeneration abilities. Therefore, to obtain materials with both tumor therapy and tissue regeneration abilities, it is meaningful and necessary to develop 3D nanobiomaterials with multifunctions. In this review, we systematically review the research progress of nanobiomaterials with varied dimensional structures including 0D, 1D, 2D and 3D, as well as evolutional functions from single tumor therapy to simultaneous tumor therapy and tissue regeneration. This review may pave the way for developing an interdisciplinary research of nanobiomaterials in combination of tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
27
|
Xu L, Wang J, Lu SY, Wang X, Cao Y, Wang M, Liu F, Kang Y, Liu H. Construction of a Polypyrrole-Based Multifunctional Nanocomposite for Dual-Modal Imaging and Enhanced Synergistic Phototherapy against Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9246-9254. [PMID: 31251628 DOI: 10.1021/acs.langmuir.9b01387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Design and construction of multifunctional theranostic nanoplatforms are still desired for cancer-effective treatment. Herein, a kind of polypyrrole (PPy)-based multifunctional nanocomposite was designed and successfully constructed for dual-model imaging and enhanced synergistic phototherapy against cancer cells. Through graphene oxide (GO) sheet coating, PPy nanoparticles (NPs) were effectively combined with polyethylene glycol chains, Au NPs, and IR820 molecules. The obtained PGPAI NPs showed promising ability for photoacoustic/computed tomography imaging. Under near-infrared light irradiation, the PPy core and IR820 molecule effectively generated heat and reactive oxygen species (ROS), respectively. Furthermore, the loaded Au NPs owning catalase-like activity produced oxygen by decomposing H2O2 (up-regulated in tumor region), enhancing the oxygen-dependent photodynamic therapy efficacy. The formed PGPAI NPs were also proved to own desirable photothermal conversion efficiency, photothermal stability, colloidal stability, cytocompatibility, and cellular internalization behaviors. Furthermore, cell assay demonstrated that PGPAI NPs displayed enhanced synergistic phototherapy efficacy against cancer cells. These developed multifunctional nanoplatforms are promising for effective cancer theranostic applications.
Collapse
Affiliation(s)
| | | | | | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing , 400010 , China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing , 400010 , China
| | | | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
| | | | | |
Collapse
|
28
|
Xiong Y, Xu Z, Li Z. Polydopamine-Based Nanocarriers for Photosensitizer Delivery. Front Chem 2019; 7:471. [PMID: 31355178 PMCID: PMC6639787 DOI: 10.3389/fchem.2019.00471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a non-invasive modality for treating tumors while a photosensitizer (PS) plays an indispensable role in PDT. Nevertheless, free PSs are limited by their low light stability, rapid blood clearance, and poor water solubility. Constructing a nanocarrier delivering PSs is an appealing and potential way to solve these issues. As a melanin-like biopolymer, polydopamine (PDA) is widely utilized in biomedical applications (drug delivery, tissue engineering, and cancer therapy) for its prominent properties, including favorable biocompatibility, easy preparation, and versatile functionality. PDA-based nanocarriers are thus leveraged to overcome the inherent shortcomings of free PSs. In this Mini-Review, we will firstly present an overview on the recent developments of PDA nanocarriers delivering PSs. Then, we introduce three distinctive strategies developed to combine PSs with PDA nanocarriers. The advantages and disadvantages of each strategy will be discussed. Finally, the current challenges and future opportunities of PDA-based PS nanocarriers will also be addressed.
Collapse
Affiliation(s)
- Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Hubei University, Wuhan, China
| | - Zushun Xu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Hubei University, Wuhan, China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, East Lake High Tech Zone, Wuhan, China
| |
Collapse
|
29
|
Zhao J, Zhu Y, Ye C, Chen Y, Wang S, Zou D, Li Z. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine 2019; 14:3893-3909. [PMID: 31239663 PMCID: PMC6551591 DOI: 10.2147/ijn.s202876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Photothermal and chemotherapy treatment has been frequently studied for cancer therapy; however, chemotherapy is equally toxic to both normal and cancer cells. The clinical application value of most kinds of photothermal transforming agents remains limited, due to their poor degradation and minimal accumulation in tumors. Materials and methods: We reported the synthesis of photothermal transforming agents (MoS2) and chemotherapeutic (doxorubicin, DOX) co-loaded electrospun nanofibers using blend electrospinning for the treatment of postoperative tumor recurrence. Results: Under the irradiation of an 808 nm laser, the as-prepared chitosan/polyvinyl alcohol/MoS2/DOX nanofibers showed an admirable photothermal conversion capability with a photothermal conversion efficiency of 23.2%. These composite nanofibers are in vitro and in vivo biocompatible. In addition, they could control the sustained release of DOX and the generated heat can sensitize the chemotherapeutic efficacy of DOX via enhancing its release rate. Their chemo-/photothermal combined therapy efficiency was systematically studied in vitro and in vivo. Instead of circulating with the body fluid, MoS2 was trapped by the nanofibrous matrix in the tumor and so its tumor-killing ability was not compromised, thus rendering this composite nanofiber a promising alternative for future clinical translation within biomedical application fields. Conclusion: Chitosan/polyvinyl alcohol/MoS2/DOX nanofibers showed an excellent photothermal conversion capability with a photothermal conversion efficiency of 23.2% and can completely inhibit the postoperative tumor reoccurrence.
Collapse
Affiliation(s)
- Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Yangbei Zhu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Changqing Ye
- College of Science, University of Shanghai for Science and Technology, Shanghai200093, People’s Republic of China
| | - Ying Chen
- College of Science, University of Shanghai for Science and Technology, Shanghai200093, People’s Republic of China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, Shanghai200093, People’s Republic of China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai200025, People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| |
Collapse
|
30
|
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130:147-165. [PMID: 30735948 DOI: 10.1016/j.bios.2019.01.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
Abstract
Early cancer diagnosis is of prime importance as it paves the way for effective treatment and possible patient survival. The recent advancements in the field of biosensorics have facilitated the development of functionalized nanobiosensors which have the potential to provide a cost-effective, reliable and rapid diagnostic strategy for cancers. These nanoscaled sensing systems utilize electrochemical, optical, mass and calorimetric sensing mechanisms to specifically identify the disease-specific biomarkers. Because of clinical translational utility, the present review aims to describe the recent developments and status of the nanobiosensors as a point-of-care approach for cancer diagnosis. The review also offers important insights into the design, preparation and characterization of these nano-frameworks. In particular, the state-of-art nanobiosensors based on carbon nanostructures, metal nanoparticles, magnetic nanoparticles, silica-based nanomaterials, conducting polymers based nanoparticles and quantum dots, which provide countless opportunities in the field of cancer biosensorics have been summarized. It also showcases the need to perform robust clinical validation of the emerging nanobiosensor strategies that would act as the ultimate point-of-care test for the personalized cancer therapeutics.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India.
| |
Collapse
|
31
|
Li W, Wang X, Wang J, Guo Y, Lu SY, Li CM, Kang Y, Wang ZG, Ran HT, Cao Y, Liu H. Enhanced Photoacoustic and Photothermal Effect of Functionalized Polypyrrole Nanoparticles for Near-Infrared Theranostic Treatment of Tumor. Biomacromolecules 2018; 20:401-411. [DOI: 10.1021/acs.biomac.8b01453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenchao Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jingjing Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuan Guo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Shi-Yu Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chang Ming Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Zhi-Gang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hai-Tao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| |
Collapse
|