1
|
Smith A, Larsen TRB, Zimmerman HK, Virolainen SJ, Meyer JJ, Keranen Burden LM, Burden DL. Design and Construction of a Multi-Tiered Minimal Actin Cortex for Structural Support in Lipid Bilayer Applications. ACS APPLIED BIO MATERIALS 2024; 7:1936-1946. [PMID: 38427377 PMCID: PMC10951949 DOI: 10.1021/acsabm.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Artificial lipid bilayers have revolutionized biochemical and biophysical research by providing a versatile interface to study aspects of cell membranes and membrane-bound processes in a controlled environment. Artificial bilayers also play a central role in numerous biosensing applications, form the foundational interface for liposomal drug delivery, and provide a vital structure for the development of synthetic cells. But unlike the envelope in many living cells, artificial bilayers can be mechanically fragile. Here, we develop prototype scaffolds for artificial bilayers made from multiple chemically linked tiers of actin filaments that can be bonded to lipid headgroups. We call the interlinked and layered assembly a multiple minimal actin cortex (multi-MAC). Construction of multi-MACs has the potential to significantly increase the bilayer's resistance to applied stress while retaining many desirable physical and chemical properties that are characteristic of lipid bilayers. Furthermore, the linking chemistry of multi-MACs is generalizable and can be applied almost anywhere lipid bilayers are important. This work describes a filament-by-filament approach to multi-MAC assembly that produces distinct 2D and 3D architectures. The nature of the structure depends on a combination of the underlying chemical conditions. Using fluorescence imaging techniques in model planar bilayers, we explore how multi-MACs vary with electrostatic charge, assembly time, ionic strength, and type of chemical linker. We also assess how the presence of a multi-MAC alters the underlying lateral diffusion of lipids and investigate the ability of multi-MACs to withstand exposure to shear stress.
Collapse
Affiliation(s)
- Amanda
J. Smith
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Theodore R. B. Larsen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Harmony K. Zimmerman
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Samuel J. Virolainen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Lisa M. Keranen Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Daniel L. Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| |
Collapse
|
2
|
Burden DL, Meyer JJ, Michael RD, Anderson SC, Burden HM, Peña SM, Leong-Fern KJ, Van Ye LA, Meyer EC, Keranen-Burden LM. Confirming Silent Translocation through Nanopores with Simultaneous Single-Molecule Fluorescence and Single-Channel Electrical Recordings. Anal Chem 2023; 95:18020-18028. [PMID: 37991877 PMCID: PMC10719886 DOI: 10.1021/acs.analchem.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Most of what is known concerning the luminal passage of materials through nanopores arises from electrical measurements. Whether nanopores are biological, solid-state, synthetic, hybrid, glass-capillary-based, or protein ion channels in cells and tissues, characteristic signatures embedded in the flow of ionic current are foundational to understanding functional behavior. In contrast, this work describes passage through a nanopore that occurs without producing an electrical signature. We refer to the phenomenon as "silent translocation." By definition, silent translocations are invisible to the standard tools of electrophysiology and fundamentally require a simultaneous ancillary measurement technique for positive identification. As a result, this phenomenon has been largely unexplored in the literature. Here, we report on a derivative of Cyanine 5 (sCy5a) that passes through the α-hemolysin (αHL) nanopore silently. Simultaneously acquired single-molecule fluorescence and single-channel electrical recordings from bilayers formed over a closed microcavity demonstrate that translocation does indeed take place, albeit infrequently. We report observations of silent translocation as a function of time, dye concentration, and nanopore population in the bilayer. Lastly, measurement of the translocation rate as a function of applied potential permits estimation of an effective energy barrier for transport through the pore as well as the effective charge on the dye, all in the absence of an information-containing electrical signature.
Collapse
Affiliation(s)
- Daniel L. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Richard D. Michael
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophie C. Anderson
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Hannah M. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophia M. Peña
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | | - Lily Anne Van Ye
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Elizabeth C. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | |
Collapse
|
3
|
Liebe NL, Mey I, Vuong L, Shikho F, Geil B, Janshoff A, Steinem C. Bioinspired Membrane Interfaces: Controlling Actomyosin Architecture and Contractility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11586-11598. [PMID: 36848241 PMCID: PMC9999349 DOI: 10.1021/acsami.3c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The creation of biologically inspired artificial lipid bilayers on planar supports provides a unique platform to study membrane-confined processes in a well-controlled setting. At the plasma membrane of mammalian cells, the linkage of the filamentous (F)-actin network is of pivotal importance leading to cell-specific and dynamic F-actin architectures, which are essential for the cell's shape, mechanical resilience, and biological function. These networks are established through the coordinated action of diverse actin-binding proteins and the presence of the plasma membrane. Here, we established phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2)-doped supported planar lipid bilayers to which contractile actomyosin networks were bound via the membrane-actin linker ezrin. This membrane system, amenable to high-resolution fluorescence microscopy, enabled us to analyze the connectivity and contractility of the actomyosin network. We found that the network architecture and dynamics are not only a function of the PtdIns[4,5]P2 concentration but also depend on the presence of negatively charged phosphatidylserine (PS). PS drives the attached network into a regime, where low but physiologically relevant connectivity to the membrane results in strong contractility of the actomyosin network, emphasizing the importance of the lipid composition of the membrane interface.
Collapse
Affiliation(s)
- Nils L. Liebe
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Ingo Mey
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Loan Vuong
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Fadi Shikho
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Burkhard Geil
- Institut
für Physikalische Chemie, Georg-August
Universität, Tammannstr. 6, Göttingen 37077, Germany
| | - Andreas Janshoff
- Institut
für Physikalische Chemie, Georg-August
Universität, Tammannstr. 6, Göttingen 37077, Germany
| | - Claudia Steinem
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
- Max-Planck-Institut
für Dynamik und Selbstorganisation, Am Fassberg 17, Göttingen 37077, Germany
| |
Collapse
|
4
|
Morris CE, Wheeler JJ, Joos B. The Donnan-dominated resting state of skeletal muscle fibers contributes to resilience and longevity in dystrophic fibers. J Gen Physiol 2022; 154:212743. [PMID: 34731883 PMCID: PMC8570295 DOI: 10.1085/jgp.202112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly “Pump-Leak–dominated” ion homeostatic steady state, skeletal muscle fibers operate with a low-cost “Donnan-dominated” ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic “nonosmotic” sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation–contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.
Collapse
Affiliation(s)
- Catherine E Morris
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | | | - Béla Joos
- Center for Neural Dynamics, University of Ottawa, Ottawa, Canada.,Department of Physics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
Kang X, Alibakhshi MA, Wanunu M. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform. NANO LETTERS 2019; 19:9145-9153. [PMID: 31724865 DOI: 10.1021/acs.nanolett.9b04446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biological nanopores have been used as powerful platforms for label-free detection and identification of a range of biomolecules for biosensing applications and single molecule biophysics studies. Nonetheless, high limit of detection (LOD) of analytes due to inefficient biomolecular capture into biological nanopores at low voltage poses practical limits on their biosensing efficacy. Several approaches have been proposed to improve the voltage stability of the membrane, including polymerization and hydrogel coating, however, these compromise the lipid fluidity. Here, we developed a chip-based platform that can be massively produced on a wafer scale that is capable of sustaining high voltages of 350 mV with comparable membrane areas to traditional systems. Using this platform, we demonstrate sensing of DNA hairpins in α-hemolysin nanopores at the nanomolar regime under high voltage. Further, we have developed a workflow for one-pot enzymatic release of DNA hairpins with different stem lengths from magnetic microbeads, followed by multiplexed nanopore-based quantification of the hairpins within minutes, paving the way for novel nanopore-based multiplexed biosensing applications.
Collapse
|