1
|
Gou X, Zhao HY, Huang Z, Yang Y, Jin LY. Donor-Acceptor Assembly of Amphiphilic Molecules Based on 9,10-Distyrylanthracene Derivatives with Terminal Naphthalene Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7106-7113. [PMID: 38498422 DOI: 10.1021/acs.langmuir.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuntian Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Zhao HY, Liu GL, Xu Q, Pei YR, Jin LY. Chirality-induced supramolecular nanodishes: enantioselectivity and energy transfer. SOFT MATTER 2024; 20:1884-1891. [PMID: 38321960 DOI: 10.1039/d3sm01747h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Gui-Lang Liu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Qing Xu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| |
Collapse
|
3
|
Zhao HY, Gou X, Pei YR, Jin LY. Chirality Amplification Over the Morphology Control of the Rod-Coil Molecules with Lateral Methyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37294904 DOI: 10.1021/acs.langmuir.3c00864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application. The methyl side chain being located on different blocks influences the driving force through steric hindrance, which determines the direction and degree of tilted packing during the π-π stacking of the self-assembly process. Interestingly, the amphiphilic rod-coil molecules aggregated into long helical nano-fibers, which further hierarchically aggregated into nano-sheets or nano-tubes upon increasing the concentration of the THF/H2O solution. In particular, the hierarchical-chiral assembly effectively amplified the chirality and was validated by the strong Cotton signals; playing a vital role in the enantioselective nucleophilic substitution reaction. These results provide new insights into the applications of chiral self-assemblies and soft chiral materials.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| |
Collapse
|
4
|
Mohan A, Singhal R, Ramanan SR. A study on the effect of the collector properties on the fabrication of magnetic polystyrene nanocomposite fibers using the electrospinning technique. J Appl Polym Sci 2022. [DOI: 10.1002/app.53461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aakanksha Mohan
- Department of Chemical Engineering BITS Pilani K K Birla Goa Campus Pilani India
| | - Richa Singhal
- Department of Chemical Engineering BITS Pilani K K Birla Goa Campus Pilani India
| | - Sutapa Roy Ramanan
- Department of Chemical Engineering BITS Pilani K K Birla Goa Campus Pilani India
| |
Collapse
|
5
|
Kalaw JM, Kitagawa M, Shigemitsu H, Kida T. Highly Regulated Supramolecular Assembly of 2- O-Methylated α-Cyclodextrin to Construct Vertically Oriented Microrods on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5149-5155. [PMID: 34652161 DOI: 10.1021/acs.langmuir.1c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precisely controlling self-assembled molecules to fabricate highly ordered nano/microstructures is a challenging task. Here, a simple precipitation technique with common solvents forms supramolecular microstructures with highly regulated molecular arrangements from a methylated derivative of α-cyclodextrin at the 2-O position (2-Me-α-CD). The formation of a head-to-tail channel assembly of 2-Me-α-CD through host-guest complexation with a solvent molecule such as benzene or cyclohexane yields well-defined hexagonal microrods. Specifically, the self-assembly of 2-Me-α-CD forms vertically aligned hexagonal microrods on a highly ordered pyrolytic graphite (HOPG) surface via epitaxial growth. This work should provide insight into the design of supramolecular building blocks for controlled self-assembly.
Collapse
|
6
|
Lu J, Deng Y, Zhong K, Huang Z, Jin LY. Construction of nanoaggregates from amphiphilic supramolecules containing barbiturate and
Hamilton
wedge units. POLYM INT 2021. [DOI: 10.1002/pi.6318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Lu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education Yanbian University Yanji China
| | - Yingying Deng
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education Yanbian University Yanji China
| | - Keli Zhong
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University Jinzhou China
| | - Zhegang Huang
- School of Chemistry, Sun Yat Sen University Guangzhou China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education Yanbian University Yanji China
| |
Collapse
|
7
|
Ye N, Pei YR, Han Q, Lee M, Jin LY. Self-assembly of propeller-shaped amphiphilic molecules: control over the supramolecular morphology and photoproperties of their aggregates. SOFT MATTER 2021; 17:6661-6668. [PMID: 34160543 DOI: 10.1039/d1sm00661d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aggregation-induced emission (AIE) effect is an important feature for luminescence studies, which can offer a broader range of applications for fluorescent materials. Herein, we report the morphological control and photoproperties of amphipathic propeller-shaped rod-coil molecules based on a benzene-1,3,5-tricarboxamide (BTA) unit, which restricts the intramolecular rotation and leads to the AIE effect during the self-assembly process. Investigations on the assembly of these molecules have revealed that tetragonal perforated lamella, hexagonal columnar, body-centered tetragonal micellar, and hexagonal close-packed nanostructures were spontaneously formed in the solid-state. In the solution-state, these molecules assemble into nanosheet-like aggregates, bowl-like objects, and spherical nanoparticles, respectively. The morphology of the molecular aggregates can be controlled by modifying the molecular chain length or introducing lateral methyl groups in the coil chain. Notably, these molecular assemblies exhibit strong AIE phenomena in a mixed THF/H2O solution and can be used as smart soft materials due to the restriction of their intramolecular motion.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
8
|
Yang Y, Han Q, Pei YR, Yu S, Huang Z, Jin LY. Stimuli-Responsive Supramolecular Chirality Switching and Nanoassembly Constructed by n-Shaped Amphiphilic Molecules in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1215-1224. [PMID: 33426895 DOI: 10.1021/acs.langmuir.0c03190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled nanomaterials composed of amphiphilic oligomers with functional groups have been applied in the fields of biomimetic chemistry and on-demand delivery systems. Herein, we report the assembly behavior and unique properties of an emergent n-shaped rod-coil molecule containing an azobenzene (AZO) group upon application of an external stimulus (thermal, UV light). The n-shaped amphiphilic molecules comprising an aromatic segment based on anthracene, phenyl linked with azobenzene groups, and hydrophilic oligoether (chiral) segments self-assemble into large strip-like sheets and perforated-nanocage fragments in an aqueous environment, depending on the flexible oligoether chains. Interestingly, the nano-objects formed in aqueous solution undergo a morphological transition from sheets and nanocages to small one-dimensional nanofibers. These molecules exhibit reversible photo- and thermal-responsiveness, accompanied by a change in the supramolecular chirality caused by the conformational transitions of the rod backbone. The architecture of n-shaped amphiphilic molecules with a photosensitive group makes them ideal candidates for intelligent materials for applications in advanced materials science.
Collapse
Affiliation(s)
- Yuntian Yang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Shengsheng Yu
- Department of Chemistry, Shandong University of Technology, Zibo 255000, People's Republic of China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| |
Collapse
|
9
|
Hu K, Sarkar J, Zheng J, Lim YHM, Goto A. Organocatalyzed Living Radical Polymerization of Itaconates and Self‐Assemblies of Rod−Coil Block Copolymers. Macromol Rapid Commun 2020; 41:e2000075. [DOI: 10.1002/marc.202000075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Keling Hu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371
| | - Jit Sarkar
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371
| | - Jie Zheng
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371
| | - Yan Hui Melania Lim
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371
| | - Atsushi Goto
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371
| |
Collapse
|
10
|
Yang Y, Chen F, Tian X, Chen T, Wu L, Jin LY. Supramolecular nanostructures constructed by rod-coil molecular isomers: effect of rod sequences on molecular assembly. SOFT MATTER 2019; 15:6718-6724. [PMID: 31389465 DOI: 10.1039/c9sm01279f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coil-rod-coil molecules, composed of flexible oligoether chains and conjugated rod blocks, have a well-known ability to produce various nanostructures in bulk and in aqueous solution. Herein we report the synthesis and self-assembly of coil-rod-coil molecules based on the sequence of the rod building block and the type of oligoether coil chain. These molecules consist of conjugated rod segments, which are composed of biphenyl, terphenyl, and acetylenic bonds, with chiral oligoether chains as flexible coil segments. The experimental results imply that the sequence of the rod segments markedly influences the self-assembled nanostructures of coil-rod-coil molecules in the bulk state, and that the type of coil chain strongly affects the morphology of the supramolecular nanoassemblies of these molecules in aqueous solution. In the bulk state, molecules 1a and 1b, which contain biphenyl units connected to the end of the coil segments self-organize into a hexagonal perforated lamellar phase, and oblique columnar and body-centred tetragonal structures, respectively. However, molecules 2a and 2b bearing terphenyl units linked to the end of the coil segments self-assemble into lamellar, hexagonal perforated lamellar and hexagonal columnar structures. In aqueous solution, rod-coil molecular isomers with linear chiral oligoether chains self-assemble into helical nanofibres of various lengths. Meanwhile, isomers with chiral oligoether dendron chains self-organize into sheet-like nanoribbons of different sizes.
Collapse
Affiliation(s)
- Yuntian Yang
- Key Lab for Organism Resources of the Changbai Mountain and Functional Molecules, and Department of Chemistry, College of Science, Yanbian University, No. 977 Gongyuan Road, Yanji 133002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Cui Y, Tao D, Huang X, Lu G, Feng C. Self-Assembled Helical and Twisted Nanostructures of a Preferred Handedness from Achiral π-Conjugated Oligo( p-phenylenevinylene) Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3134-3142. [PMID: 30712352 DOI: 10.1021/acs.langmuir.8b04127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation of chiral nanostructures from the self-assembly of achiral building blocks without external symmetry breaking inducing factors is believed to associate with the origin of chirality. Herein, we reported the synthesis and self-assembly of oligo( p-phenylenevinylene)- b-poly(ethylene glycol) (OPV3- b-PEG17, the subscripts represent the number of repeat unit of each block) in solution. We systematically examined the influence of solvent, heating temperature, and concentration of OPV3- b-PEG17 on the self-assembly of OPV3- b-PEG17 by UV/vis absorption and fluorescence spectrometry, circular dichroism technique, and transmission electron and atomic force microscopy. Interestingly, helical and twisted nanoribbons and nanotubes of a preferred handedness can be formed from achiral OPV3- b-PEG17 in the mixture of water/ethanol (v/v = 1/1) and the solution showed an obvious exciton-coupled bisignated signal, which indicated that symmetry breaking occurred during the formation of these nanostructures without external inducing factors. Our results showed that the occurrence of symmetry breaking is subtle to the experimental factors including solvent, heating temperature, and concentration of OPV3- b-PEG17. The directional π-π stacking along with steric repulsion between PEG domains should be the driving force for the formation of these chiral nanostructures. The occurrence of statistical fluctuations in the initial stage of self-assembly led to an accidental excess of helical or/and twisted structures, that is, symmetry breaking. Subsequently, the autocatalysis effect resulted in the formation of helical or/and twisted nanoribbons with a preferred handedness.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Daliao Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , Donghua University , 2999 North Renmin Road , Songjiang, Shanghai 201620 , People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|