1
|
Wu S, Lin L, Hu Q, Yao X, Wang H, Liu S, Liu Q, Xi Y, Lin Y, Gong J, Hu R, Zhan W, Luo Y, He G, Liu Z, Xiong W, Wang Q, Xu Z, Bai F, Lu Q. Mechano-electrical transduction components TMC1-CIB2 undergo a Ca 2+-induced conformational change linked to hearing loss. Dev Cell 2025:S1534-5807(25)00004-8. [PMID: 39889697 DOI: 10.1016/j.devcel.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
TMC1, a unique causative gene associated with deafness, exhibits variants with autosomal dominant and recessive inheritance patterns. TMC1 codes for the transmembrane channel-like protein 1 (TMC1), a key component of the mechano-electrical transduction (MET) machinery for hearing. However, the molecular mechanism of Ca2+ regulation in MET remains unclear. Calcium and integrin-binding protein 2 (CIB2), another MET component associated with deafness, can bind with Ca2+. Our study shows that TMC1-CIB2 complex undergoes a Ca2+-induced conformational change. We identified a vertebrate-specific binding site on TMC1 that interacts with apo CIB2, linked with hearing loss. Using an ex vivo mouse organotypic cochlea model, we demonstrated that disruption of the calcium-binding site of CIB2 perturbs the MET channel conductivity. After systematically analyzing the hearing loss variants, we observed dominant mutations of TMC1 cluster around the putative ion pore or at the binding interfaces with CIB2. These findings elucidate the molecular mechanisms underlying TMC1-linked hearing loss.
Collapse
Affiliation(s)
- Shaoxuan Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiaoyu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
| | - Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Hongyang Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yuzhe Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jianqiao Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Zhan
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Lab, Shanghai 201210, China
| | - Yi Luo
- Senior Department of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Lab, Shanghai 201210, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Qiuju Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
2
|
Miyazaki Y, Shinoda W. pSPICA Force Field Extended for Proteins and Peptides. J Chem Inf Model 2024; 64:532-542. [PMID: 38156656 DOI: 10.1021/acs.jcim.3c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Many coarse-grained (CG) molecular dynamics (MD) studies have been performed to investigate biological processes involving proteins and lipids. CG force fields (FFs) in these MD studies often use implicit or nonpolar water models to reduce computational costs. CG-MD using water models cannot properly describe electrostatic screening effects owing to the hydration of ionic segments and thus cannot appropriately describe molecular events involving water channels and pores through lipid membranes. To overcome this issue, we developed a protein model in the pSPICA FF, in which a polar CG water model showing the proper dielectric response was adopted. The developed CG model greatly improved the transfer free energy profiles of charged side chain analogues across the lipid membrane. Application studies on melittin-induced membrane pores and mechanosensitive channels in lipid membranes demonstrated that CG-MDs using the pSPICA FF correctly reproduced the structure and stability of the pores and channels. Furthermore, the adsorption behavior of the highly charged nona-arginine peptides on lipid membranes changed with salt concentration, indicating the pSPICA FF is also useful for simulating protein adsorption on membrane surfaces.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Lane BJ, Pliotas C. Approaches for the modulation of mechanosensitive MscL channel pores. Front Chem 2023; 11:1162412. [PMID: 37021145 PMCID: PMC10069478 DOI: 10.3389/fchem.2023.1162412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
MscL was the first mechanosensitive ion channel identified in bacteria. The channel opens its large pore when the turgor pressure of the cytoplasm increases close to the lytic limit of the cellular membrane. Despite their ubiquity across organisms, their importance in biological processes, and the likelihood that they are one of the oldest mechanisms of sensory activation in cells, the exact molecular mechanism by which these channels sense changes in lateral tension is not fully understood. Modulation of the channel has been key to understanding important aspects of the structure and function of MscL, but a lack of molecular triggers of these channels hindered early developments in the field. Initial attempts to activate mechanosensitive channels and stabilize functionally relevant expanded or open states relied on mutations and associated post-translational modifications that were often cysteine reactive. These sulfhydryl reagents positioned at key residues have allowed the engineering of MscL channels for biotechnological purposes. Other studies have modulated MscL by altering membrane properties, such as lipid composition and physical properties. More recently, a variety of structurally distinct agonists have been shown bind to MscL directly, close to a transmembrane pocket that has been shown to have an important role in channel mechanical gating. These agonists have the potential to be developed further into antimicrobial therapies that target MscL, by considering the structural landscape and properties of these pockets.
Collapse
Affiliation(s)
- Benjamin J. Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Yuan Z, Hansen SB. Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging. MEMBRANES 2023; 13:membranes13020250. [PMID: 36837753 PMCID: PMC9966874 DOI: 10.3390/membranes13020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 05/15/2023]
Abstract
Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP2 in opposing the regulation of cholesterol, as seen through super-resolution imaging.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA
- Department of Neuroscience UF Scripps, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B. Hansen
- Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA
- Department of Neuroscience UF Scripps, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
5
|
Yuan Z, Gottsacker C, He X, Waterkotte T, Park YC. Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies. Adv Drug Deliv Rev 2022; 187:114395. [PMID: 35709884 PMCID: PMC11956556 DOI: 10.1016/j.addr.2022.114395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Overuse or misuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Notable progress in liposome research has been made in drug delivery and several liposomal drugs have been approved for clinical use owing to its biocompatibility and improved efficacy. Recently, liposomes have been engineered further to release encapsulated drugs on the target of interest in a dose-controlled fashion in response to external stimuli such as light, pH, and heat. Among those, light-activated liposomal drug delivery gained a lot of attention because drug release at the targeted sites can be precisely controlled by varying laser/light duration, energy and beam area. We envision potential applications of the light-activated liposomal delivery systems for effective drug-resistant antimicrobial therapies. The use of light-activated liposomes will be widely spread in antimicrobial therapies if the amount of drug is precisely controlled for a prolonged time at a target location. In this review, we discussed the breadth and depth of various light-activated liposomal drug delivery technology. Emphasis was given to repetitive release mechanism and applications of light-activated liposomes because the repeatability provides stability and precise control of the drug delivery system to prevent overdose of antimicrobials and treat with minimal doses. We described limitations on translation from pre-clinical to clinical settings and strategies to overcome the limitations. Careful consideration of light-responsive materials, lipid composition, laser parameters and laser safety is important when selecting and designing the drug delivery system for successful applications.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Catherine Gottsacker
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Xingyu He
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Thomas Waterkotte
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Yoonjee C Park
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
6
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
7
|
Immadisetty K, Polasa A, Shelton R, Moradi M. Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel. Comput Struct Biotechnol J 2022; 20:2539-2550. [PMID: 35685356 PMCID: PMC9156883 DOI: 10.1016/j.csbj.2022.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Reid Shelton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
8
|
Wang B, Lane BJ, Kapsalis C, Ault JR, Sobott F, El Mkami H, Calabrese AN, Kalli AC, Pliotas C. Pocket delipidation induced by membrane tension or modification leads to a structurally analogous mechanosensitive channel state. Structure 2022; 30:608-622.e5. [PMID: 34986323 PMCID: PMC9033278 DOI: 10.1016/j.str.2021.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.
Collapse
Affiliation(s)
- Bolin Wang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK.
| |
Collapse
|
9
|
Zhang X, Hu H, Huang X, Yin Y, Wang S, Jiao S, Liu Z, Zheng Y. Protective Mechanism of a Layer-by-Layer-Assembled Artificial Cell Wall on Probiotics. J Phys Chem B 2022; 126:1933-1940. [PMID: 35200022 DOI: 10.1021/acs.jpcb.1c09282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Constructing an artificial cell wall (AFCW) based on the layer-by-layer assembly of polymer films to protect probiotics in harsh conditions is highly desirable. Early findings showed that encapsulating yeast cells by an AFCW improved the cell viability by 50% in antibiotic solution. However, the detailed molecular interaction mechanism remains unclear by experiments. Herein, two ciprofloxacin (CPFX) permeation models, including models 1 and 2 that were, respectively, composed of just the yeast cell membrane and the AFCW coating cell membrane, were investigated by molecular dynamics simulations. The free energy profiles delineating the permeation process of CPFX reveal that the permeation of CPFX through the cell membrane of model 2 is more difficult than through that of model 1. The analysis results show that the AFCW leads to two sharp increases in free energy barriers, amounting to 8.9 and 6.2 kcal/mol, thereby reducing the penetrating rate of CPFX into the cell membrane. Moreover, decomposition of the potentials of mean force into free energy components suggested that the electrostatic interactions of CPFX with the AFCW predominantly contributed to the high free energy barriers. The current results provide a good understanding of the protective mechanism of the self-assembled cell walls against CPFX and help to design other AFCWs.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hanjiao Hu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.,Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Shuangshuang Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
10
|
Zhang X, Zhang Y, Tang S, Ma S, Shen Y, Chen Y, Tong Q, Li Y, Yang J. Hydrophobic Gate of Mechanosensitive Channel of Large Conductance in Lipid Bilayers Revealed by Solid-State NMR Spectroscopy. J Phys Chem B 2021; 125:2477-2490. [DOI: 10.1021/acs.jpcb.0c07487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xuning Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyang Tang
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shaojie Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Yanke Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Tong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuezhou Li
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
11
|
Chern MS, Okamoto Y, Suga K, Watanabe N, Umakoshi H. Changes Caused by Liposomes to the Belousov-Zhabotinsky Reaction. J Phys Chem B 2020; 124:9862-9869. [PMID: 33086793 DOI: 10.1021/acs.jpcb.0c06413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Belousov-Zhabotinsky (BZ) reaction has been applied to give autonomous dynamic behaviors to artificial systems. This reaction is conducted in an aqueous system, but it produces some hydrophobic intermediates, such as bromine. On the basis of previous works about reactions in the lipid bilayer, we investigated how liposome membranes (water-oil interface) affect the BZ reaction. Herein diacylglycerophosphocholine (PC) molecules with a variety of hydrocarbon tails were selected as components of liposomes, and the BZ reaction in the presence of the liposomes was characterized. As a result, membrane fluidity was the main characteristic leading to changes in the reaction behavior. The decrease of the frequency of oscillations was relevant to membrane fluidity, suggesting the interaction of bromine species in the hydrophobic site of the liposomes. In addition, the heterogeneous membrane (so+ld) of DMPC showed a fast decrease in the amplitude of oscillations. Conclusively, characteristics of the hydrophobic environment play a role in the reaction.
Collapse
Affiliation(s)
- Michael S Chern
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| |
Collapse
|
12
|
Takahara A. Preface to the Interfaces and Biology 1: Mechanobiology Special Issue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7333-7334. [PMID: 31181916 DOI: 10.1021/acs.langmuir.9b01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|