1
|
Park H, Patil TV, Mo C, Lim KT. Nanodiamond: a multifaceted exploration of electrospun nanofibers for antibacterial and wound healing applications. J Nanobiotechnology 2025; 23:285. [PMID: 40205555 PMCID: PMC11980292 DOI: 10.1186/s12951-025-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
In this review, we explore the exciting potential of nanodiamonds (NDs) as innovative materials for future wound dressings. These materials aim to tackle important issues in wound care and offer fresh solutions. While NDs show promising mechanical and structural properties, their full potential in wound healing applications is still not fully explored. We emphasize their unique features-like high surface area, the dispersion of functional groups, and excellent purity-which contribute to their mechanical stability, adhesion, growth, and movement-all critical for effective wound healing and tissue repair. We also focused on modifying the surface of these particles using various functionalization, which can enhance their biocompatibility, antibacterial properties, heat conductivity, and wettability. This positions NDs as a powerful tool for improving chronic wound care in the future. However, there are notable challenges when it comes to scaling up ND-based nanofiber matrices, which currently limits the electrospinning process for mass production. Also, issues with the physical and chemical stability of ND-based nanofibers when interacting with cells need to be resolved to guarantee long-lasting effectiveness. In this study, we tackle these challenges by suggesting solutions like surface functionalization, optimizing the electrospinning process, and creating hybrid scaffolds. Our findings show that these innovations can effectively address scalability and stability issues, paving the way for broader clinical applications. This review not only emphasizes the advantages of NDs in wound healing but also introduces new insights for enhancing the biocompatibility and functionality of ND-based nanofibers, finally pushing the technology of wound dressings forward.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Changyeun Mo
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
2
|
He X, Deng G, Zhang Z, Mao H, Cai L. Enhanced coloration and functionality of wool fabric by Hydroxypropyl-β-cyclodextrin coated magnetic nanoparticles. ARAB J CHEM 2024; 17:105923. [DOI: 10.1016/j.arabjc.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
He X, Zhu T, Zhang Z, Deng G, Cai L, Mao H. Adenosine Triphosphate/Chitin Whisker/Phenylboronic Acid-Modified Wool Fabrics with Enhanced Dyeability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:893. [PMID: 38399145 PMCID: PMC10890586 DOI: 10.3390/ma17040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Promoting the uptake of dyes is an important part of the sustainable processing of wool products. This study presents an effective modification approach to enhance the dyeability of wool fabric with adenosine triphosphate as an activator, 3-carboxyphenyl boronic acid as a ligand-binding agent, and chitin whisker as a couple agent. The structure and surface morphology of the as-prepared wool fabric was characterized in detail. Natural luteolin and acid red 1 were used to dye the modified wool fabric, and the effect of different dyeing parameters on dyeing properties was discussed. The results indicated that the modified wool gained better surface color depth (K/S) and uptake without additional agents than the untreated wool fabric. When the modified wool fabric was dyed at 45 °C with luteolin and at 60 °C with acid red 1, the dyeing processes of the two dyes on the modified wool fabrics followed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the dyed modified wool fabrics possessed improved color fastness. Overall, this work offers a facile, effective, and sustainable way to improve the low-temperature dyeability of wool products.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiyan Mao
- Yancheng Institute of Technology, School of Textiles and Clothing, Yancheng 224051, China; (X.H.)
| |
Collapse
|
4
|
Shi F, Wang M, Fang K, Zhao Z, Zhao H, Chen W. Fabrication of Chitosan-Loaded Multifunctional Wool Fabric for Reactive Dye Digital Inkjet Printing by Schiff Base Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10081-10088. [PMID: 35960200 DOI: 10.1021/acs.langmuir.2c00961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving the development of high-value multifunctional wool fabrics was essential to satisfy diverse needs. Considering the various characteristics of chitosan macromolecules, herein, a padding-cross-linking process was adopted and then multifunctional wool fabrics with outstanding printing effects, shrink resistance, and antibacterial properties were fabricated. The test results showed that chitosan macromolecules loaded successfully on the wool fiber surface by Schiff base reaction. Wool fabrics changed from hydrophobic to hydrophilic due to the existence of chitosan macromolecules. The color strength (K/S value) of the reactive dye inkjet-printed wool fabric was greatly increased from 20.48 to 26.6. The area shrinkage of final samples was 2.53%, which was exceedingly lower than that of the original wool (10.96%). Moreover, the chitosan macromolecules with reactive amino groups endowed wool fabrics with certain antibacterial properties against E. coli and S. aureus. Generally, this study provided guidance for manufacturing multifunctional digital inkjet-printed wool products in mass production.
Collapse
Affiliation(s)
- Furui Shi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kuanjun Fang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an 271001, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hongzhi Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an 271001, China
| |
Collapse
|
5
|
Parveen S, Rana S, Goswami P. Developing Super-Hydrophobic and Abrasion-Resistant Wool Fabrics Using Low-Pressure Hexafluoroethane Plasma Treatment. MATERIALS 2021; 14:ma14123228. [PMID: 34208035 PMCID: PMC8230622 DOI: 10.3390/ma14123228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
The growing interest in wool fibres as an eco-friendly and sustainable material for diverse industrial applications requires an enhancement of their functional performance. To address this, wool fabrics were treated in the present research with low-pressure hexafluoroethane (C2F6) plasma to impart superhydrophobicity and improve their abrasion resistance. Unscoured and scoured wool fabrics were treated with C2F6 while varying plasma power (80 W and 150 W), gas flow rate (12 sccm and 50 sccm) and treatment time (6 min and 20 min), and the effect of plasma parameters on the abrasion resistance, water contact angle and dyeing behaviour of the wool fabrics was studied. Martindale abrasion testing showed that the surface abrasion of the wool fabrics increased with the number of abrasion cycles, and the samples treated with 150 W, 20 min, 12 sccm showed superior abrasion resistance. The scoured wool fabrics showed a contact angle of ~124°, which was stable for only 4 min 40 s, whereas the plasma-treated samples showed a stable contact angle of over 150°, exhibiting a stable superhydrophobic behaviour. The C2F6 plasma treatment also significantly reduced the exhaustion of an acid dye by wool fabrics. The EDX study confirmed the deposition of fluorine-containing elements on the wool fabrics significantly altering their properties.
Collapse
|