1
|
Singh S, Hamid Z, Babu R, Gómez-Graña S, Hu X, McCulloch I, Hoye RLZ, Govind Rao V, Polavarapu L. Halide Perovskite Photocatalysts for Clean Fuel Production and Organic Synthesis: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419603. [PMID: 40345975 DOI: 10.1002/adma.202419603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/01/2025] [Indexed: 05/11/2025]
Abstract
The need to constrain the use of fossil fuels causing global warming is motivating the development of a variety of photocatalysts for solar-to-fuel generation and chemical synthesis. In particular, semiconductor-based photocatalysts have been extensively exploited in solar-driven organic synthesis, carbon dioxide (CO2) conversion into value-added products, and hydrogen (H2) generation from water (H2O) splitting. Recently, metal halide perovskites (MHPs) have emerged as an important class of semiconductors for heterogeneous photocatalysis owing to their interesting properties. Despite key issues with long-term stability and degradation in polar solvents due to their ionic character, there has been significant progress in halide perovskite-based photocatalysts with improving their stability and performance in the gas and liquid phases. This review discusses the state-of-the-art for using halide perovskite-based photocatalysts and photoelectrocatalysis in hydrogen production from water and halogen acid solutions, CO2 reduction into value-added chemicals, and various organic chemical transformations. The different types of halide perovskites used, design strategies to overcome the instability issues in polar solvents, and the efficiencies achieved are discussed. Furthermore, the outstanding challenges associated with the use of polar electrolytes and how the stability and performance can be improved are discussed.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Zeinab Hamid
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ramavath Babu
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Xiaowen Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | | |
Collapse
|
2
|
Mishra L, Panigrahi A, Dubey P, Dutta S, Kumar H, Sarangi MK. Concentration Dependent Modulation in Optoelectronic Traits of Self-Collated CsPbBr 3 Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412614. [PMID: 40167489 DOI: 10.1002/smll.202412614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/08/2025] [Indexed: 04/02/2025]
Abstract
Self-collation of perovskite nanocrystals into superstructures of larger length scales has been growing in research interest due to their dramatically enhanced performance in various nano-devices, modulating their optical and electrical traits. Herein, the unique concentration-dependent self-assembly of phenethylamine (PEA)-capped CsPbBr3 (PCPB) perovskites spanning a size range of nano to micron level without structural phase alteration is infered. By optimizing various synthetic parameters like PEA amount, and solvents, the self-coalescence in PCPB crystal growth is controlled. Furthermore, the highest-concentrated PCPB (C5) has improved the charge transfer (CT) efficiency to 1,4-Napthoquinone (NPQ), corroborated with stronger binding between C5 and NPQ, compared to the lowest-concentrated PCPB (C1). Incorporating NPQ into such concentration-dependent PCPB enhances their local conductance unveiling the CT-induced current rise, while the detrimental insulating property of PEA molecules reduces the conductance in C5 compared to C1. These outcomes offer a foundation for tailoring the properties of self-assembled perovskites for optoelectronic devices and energy conversion technologies.
Collapse
Affiliation(s)
- Leepsa Mishra
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Priyanka Dubey
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Soumi Dutta
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Himanshu Kumar
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Manas Kumar Sarangi
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| |
Collapse
|
3
|
Riaz MA, Zahid U, Mukhtar M, Khalid MA, Mubeen M, Iqbal A. Band Gap Tuning in Mercaptoacetic Acid Capped Mixed Halides Perovskites and Effect of Solvents on Their Fluorescence Dynamics: A Potential Sensor for Polarity. J Fluoresc 2025:10.1007/s10895-024-04094-w. [PMID: 39786692 DOI: 10.1007/s10895-024-04094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
From synthesis to application, there are always certain interactions between the polar solvents and perovskite nanocrystals (NCs). To explain the effect of solvent polarity especially on the photoluminescence (PL) properties of NCs is highly desirable, especially for sensing applications. Herein We have synthesized the methylammonium lead mixed halides (MAPbCl3 - nBrn, where n = 0, 0.5, 1, 1.5) perovskite nanocrystals (NCs) at room temperature by using ligand-assisted re-precipitation (LARP) method, by employing mercaptoacetic acid (MAA) as a capping ligand. Different techniques have been employed to get information regarding the structural and optical properties of the synthesized material. Powder X-ray diffraction (PXRD) confirms the orthorhombic crystal structure of the MAPbCl3 - nBrn perovskite NCs. FT-IR (Fourier-transform infrared) analysis confirms the successful interaction of capping ligands with NCs. By increasing MABr precursor concentration during the synthesis of perovskite NCs, a red shift in the UV-Vis absorption and PL spectra has been observed. The steady-state photoluminescence (SSPL) and time-resolved photoluminescence (TRPL) techniques suggested that these perovskite NCs exhibit tunable PL relative to the substitution of Cl with Br in NCs. The comparative PL studies in non-polar (benzene) and polar (tetrahydrofuran (THF)) revealed that the PL properties are highly sensitive and selective toward the solvent chosen. All synthesized NCs possess longer PL lifetime in benzene than in THF. Relatively, perovskite NCs synthesized with 0.166 mM MABr precursor concentration show a longer PL lifetime (6.51 ns in benzene) as compared to other MABr concentrations. These studies not only propose that by controlling precursors concentration, one can synthesize NCs having tunable PL with a longer radiative PL lifetime, but also provide a comparative understanding of PL dynamics of NCs in different solvents.
Collapse
Affiliation(s)
- Muhammad Asad Riaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Usman Zahid
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maria Mukhtar
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Mubeen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Azhar Iqbal
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Mireles Villegas N, Hernandez JC, John JC, Sheldon M. Promoting solution-phase superlattices of CsPbBr 3 nanocrystals. NANOSCALE 2023. [PMID: 37171143 DOI: 10.1039/d3nr00693j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a size-selective method for purifying and isolating perovskite CsPbBr3 nanocrystals (NCs) that preserves their as-synthesized surface chemistry and extremely high photoluminescence quantum yields (PLQYs). The isolation procedure is based on the stepwise evaporation of nonpolar co-solvents with high vapor pressure to promote precipitation of a size-selected product. As the sample fractions become more uniform in size, we observe that the NCs self-assemble into colloidally stable, solution-phase superlattices (SLs). Small angle X-ray scattering (SAXS) and dynamic light scattering (DLS) studies show that the solution-phase SLs contain 1000s of NCs per supercrystal in a simple cubic, face-to-face packing arrangement. The SLs also display systematically faster radiative decay dynamics and improved PLQYs, as well as unique spectral absorption features likely resulting from inter-particle electronic coupling effects. This study is the first demonstration of solution-phase CsPbBr3 SLs and highlights their potential for achieving collective optoelectronic phenomena previously observed from solid-state assemblies.
Collapse
Affiliation(s)
| | - Josue C Hernandez
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
| | - Joshua C John
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Matthew Sheldon
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
5
|
Guo SN, Wu H, Wang D, Wang JX. Cost-Effective Strategy for the Synthesis of Air-Stable CH 3NH 3PbX 3 (X = Cl, Br, and I) Quantum Dots with Bright Emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11520-11525. [PMID: 34555896 DOI: 10.1021/acs.langmuir.1c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead halide perovskite quantum dots (QDs) are known as prospective optoelectronic device materials because of their excellent luminescence, extraordinary photoelectric performance, and specific octahedron framework. Herein, we report a cost-effective approach for synthesizing highly stable CH3NH3PbBr3 QDs in low-polarity binary solvents without nitrogen protection. The CH3NH3PbBr3 QDs are tunable from 1.2 to 4.2 nm by adjusting the proportion of oleic acid and oleylamine as capping ligands. The photoluminescence quantum yield of CH3NH3PbBr3 QDs can reach 87.4%. The fluorescence can maintain over 80% of its earliest emission intensity under the atmosphere after 5 days, which is much better than that (∼10%) of QDs with ligand-assisted reprecipitation. The possible reaction mechanism of preparing CH3NH3PbBr3 QDs was also addressed. Notably, such a strategy can be applied extensively in the preparation of other lead halide perovskite QDs. Furthermore, the as-prepared thick PMMA-coated CH3NH3PbBr3 QDs were further conjoined with a red luminescence powder on a blue InGaN chip to obtain a powerful efficiency (45.4 lm W-1) warm white light-emitting diode.
Collapse
Affiliation(s)
- Sai-Nan Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hao Wu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
6
|
Babu R, Bhandary S, Chopra D, Singh SP. Lead-Free, Water-Stable A 3 Bi 2 I 9 Perovskites: Crystal Growth and Blue-Emitting Quantum Dots [A=CH 3 NH 3 + , Cs + , and (Rb 0.05 Cs 2.95 ) + ]. Chemistry 2020; 26:10519-10527. [PMID: 32715548 DOI: 10.1002/chem.202000506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Indexed: 02/01/2023]
Abstract
Despite the great success in the increase in the power conversion efficiency of lead halide perovskite solar cells, the toxicity of lead and the unstable nature of the materials are still major concerns for their wider implementation at the industrial level. Herein, large-size single crystals (SCs) are developed in HI solution by using a temperature lowering method and nanocrystals (NCs) of A3 Bi2 I9 perovskites [where A=CH3 NH3 + (MA)+ , Cs+ , and (Rb0.05 Cs2.95 )+ ] are formed in ethanol (EtOH) and toluene (TOL). The stability of A3 Bi2 I9 perovskite is investigated by immersing the SCs for 24 h and pellets for 12 h in water. Moreover, the A3 Bi2 I9 perovskite NCs displays a promising photoluminescence quantum yield of 17.63 % and a long lifetime of 8.20 ns.
Collapse
Affiliation(s)
- Ramavath Babu
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Subhrajyoti Bhandary
- Department of Chemistry, Crystallography and Crystal Chemistry Laboratory, IISER, Bhopal, 462066, India
| | - Deepak Chopra
- Department of Chemistry, Crystallography and Crystal Chemistry Laboratory, IISER, Bhopal, 462066, India
| | - Surya Prakash Singh
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
7
|
Liu Y, Wang Z, Liang S, Li Z, Zhang M, Li H, Lin Z. Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via Star-like Molecular Bottlebrush Trilobe Nanoreactors. NANO LETTERS 2019; 19:9019-9028. [PMID: 31692361 DOI: 10.1021/acs.nanolett.9b04047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The key to exploiting perovskite nanocrystals (NCs) for long-term practical use in optoelectronic materials and devices lies in the ability to access stable NCs. Herein, we report the crafting of hairy perovskite NCs with a set of markedly improved stabilities by capitalizing on rationally designed star-like molecular bottlebrush trilobes as nanoreactors. An intriguing star-like molecular bottlebrush trilobe, poly(2-hydroxyethyl methacrylate)-graft-(poly(acrylic acid)-block-partially cross-linked polystyrene (denoted PHEMA-g-(PAA-b-cPS)) is synthesized. Subsequently, it is employed as a polymeric nanoreactor to direct the growth of green-emitting all-inorganic perovskite CsPbBr3 NCs intimately and stably tethered by partially cross-linked PS "hairs" (i.e., cPS-capped CsPbBr3 NCs). The resulting CsPbBr3 NCs exhibit an array of impressive stabilities against UV irradiation, moisture, heat, and water, due to permanently ligated hydrophobic cPS "hairs" on the surface of CsPbBr3 NCs as a result of the original covalent bonding between PAA and cPS blocks. More importantly, cPS-capped CsPbBr3 NCs manifest outstanding stability in various polar organic solvents. Such greatly improved stability can be attributed to the reduced surface defects enabled by the favorable interaction (i.e., coordination interaction and hydrogen bonding) between CsPbBr3 NCs and polar solvents, which dominates over their dissolution by polar solvents. Such exceptional stabilities impart the use of cPS-capped CsPbBr3 NCs as a selective probe for tracing the presence of Cl-/I- in polar organic solvents. The amphiphilic nonlinear block copolymer nanoreactor strategy can afford easy access to stable perovskite NCs of interest with controlled compositions and surface chemistry. They may find applications in solar cells, LEDs, photodetectors, lasers, bioimaging, biosensors, etc.
Collapse
Affiliation(s)
- Yijiang Liu
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , Xiangtan University , Xiangtan 411105 , Hunan Province , China
| | - Zewei Wang
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Shuang Liang
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zili Li
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Mingyue Zhang
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Huaming Li
- College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , Xiangtan University , Xiangtan 411105 , Hunan Province , China
| | - Zhiqun Lin
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
8
|
Premkumar S, Kundu K, Umapathy S. Impact of cesium in methylammonium lead bromide perovskites: insights into the microstructures, stability and photophysical properties. NANOSCALE 2019; 11:10292-10305. [PMID: 31099377 DOI: 10.1039/c9nr02733e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The thermal and moisture instabilities of pure organic lead halide perovskites are the foremost concerns towards the commercialization of perovskite solar cells, which can be avoided by introducing an inorganic cation, such as cesium ion (Cs+) at the A-site of the perovskite crystals. In this report, the impacts of substituted Cs+ cations on the inherent properties such as microstructures, morphology, and photophysics of pure methylammonium lead bromide (MAPbBr3) perovskites have been investigated. Successful formation of mixed MA1-xCsxPbBr3 phases (with 0 ≤ x ≤ 1.0) was predicted from the theoretically calculated tolerance factor, which was further supported by the appearance of sharp diffraction peaks in X-ray diffraction (XRD) patterns without any additional peaks in the whole composition range. Substitution of Cs+ ions brings significant lattice contraction in the parent MAPbBr3 crystal due to the ion size disparity in the ionic radii between MA+ and Cs+ ions. We examine the vibrational signatures of the Raman bands related to the organic MA+ and infer the nature of interactions between the organic moiety and the surrounding inorganic cage as a function of Cs concentration. Raman spectroscopic analysis reveals structural distortion due to the altered H-bonding interaction of the N+-HBr- type between MA+ and the PbBr3- octahedral framework as a function of Cs content, which is responsible for the octahedral tilting in Cs substituted MAPbBr3. We also found hindered rotational motions of MA+ in the octahedral cage of mixed cationic systems, resulting in the orientational ordering of MA in the presence of Cs. These results certainly offer highly ordered mixed phase structures and promote superior thermal stability, as evident from the thermogravimetric analysis. The photoluminescence intensity becomes considerably enhanced at increased substitution levels, which highlights the capability of incorporated Cs+ cations in suppressing non-radiative recombination in a pure MA-based crystal, possibly related to the mitigation of trapping. The substitution of Cs+ with MAPbBr3 allows innovative strategies to improve the proficiency of tandem solar cells by modifying their structural and photophysical properties.
Collapse
Affiliation(s)
- S Premkumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
9
|
Babu R, Vardhaman AK, Dhavale VM, Giribabu L, Singh SP. MA2CoBr4: lead-free cobalt-based perovskite for electrochemical conversion of water to oxygen. Chem Commun (Camb) 2019; 55:6779-6782. [DOI: 10.1039/c9cc00878k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized a lead-free stable organic–inorganic perovskite (MA2CoBr4) by using non-hazardous solvents such as methanol and ethanol, which are eco-friendly and safe to handle in comparison to DMF, toluene, etc.
Collapse
Affiliation(s)
- Ramavath Babu
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| | - Anil Kumar Vardhaman
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| | - Vishal M. Dhavale
- CSIR-Central Electrochemical Research Institute
- CSIR Madras Complex
- Chennai-600 113
- India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Surya Prakash Singh
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|