1
|
Chauhan G, Wang X, Quadros M, Vats M, Gupta V. Chitosan/bovine serum albumin layer-by-layer assembled particles for non-invasive inhaled drug delivery to the lungs. Int J Biol Macromol 2024; 271:132526. [PMID: 38782317 DOI: 10.1016/j.ijbiomac.2024.132526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Layer-by-Layer (LbL) assembly of polyelectrolytes on a solid core particle is a well-established technique used to deliver drugs, proteins, regenerative medicines, combinatorial therapy, etc. It is a multifunctional delivery system which can be engineered using various core template particles and coating polymers. This study reports the development and in-vitro evaluation of LbL assembled particles for non-invasive inhaled delivery to the lungs. The LbL assembled particles were prepared by successively coating polyelectrolyte macromolecules, glycol chitosan and bovine serum albumin on 0.5- and 4.5-μm polystyrene particles. The LbL assembly of polyelectrolytes was confirmed by reversible change in zeta potential and sequential increase in the particle size after accumulation of the layer. The prepared LbL particles were further assessed for aerodynamic properties using two distinct nebulizers, and toxicity assessment in normal lung cells. The in-vitro aerosolization study performed using next generation impactor coupled with Pari LC Plus and Aeroeclipse nebulizer showed that both the LbL assembled 0.5 and 4.5-μm particles had MMAD <5 μm confirming suitable aerodynamic properties for non-invasive lung delivery. The in-vitro cytotoxicity, and TEER integrity following treatment with the LbL assembled particles in normal lung epithelial and fibroblasts showed no significant cytotoxicity rendering the LbL assembled particles safe. This study extends the efficiency of LbL assembled particles for novel applications towards delivery of small and large molecules into the lungs.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mural Quadros
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mukti Vats
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
2
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Luo X, Wu S, Xiao M, Gu H, Zhang H, Chen J, Liu Y, Zhang C, Zhang J. Advances and Prospects of Prolamine Corn Protein Zein as Promising Multifunctional Drug Delivery System for Cancer Treatment. Int J Nanomedicine 2023; 18:2589-2621. [PMID: 37213352 PMCID: PMC10198181 DOI: 10.2147/ijn.s402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Zein is a type of prolamine protein that is derived from corn, and it has been recognized by the US FDA as one of the safest biological materials available. Zein possesses valuable characteristics that have made it a popular choice for the preparation of drug carriers, which can be administered through various routes to improve the therapeutic effect of antitumor drugs. Additionally, zein contains free hydroxyl and amino groups that offer numerous modification sites, enabling it to be hybridized with other materials to create functionalized drug delivery systems. However, despite its potential, the clinical translation of drug-loaded zein-based carriers remains challenging due to insufficient basic research and relatively strong hydrophobicity. In this paper, we aim to systematically introduce the main interactions between loaded drugs and zein, administration routes, and the functionalization of zein-based antitumor drug delivery systems, in order to demonstrate its development potential and promote their further application. We also provide perspectives and future directions for this promising area of research.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Sudan Wu
- Blood Purification Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jianping Chen
- Lika Shing Faculty of Medicine, School of Chinese Medicine, the University of Hong KOng, Hong Kong, People’s Republic of China
| | - Yang Liu
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Correspondence: Yang Liu, Hospital of Chengdu University of Traditional Chinese Medicine, No. 37, Shierqiao Road, Jinniu District, Chengdu, Sichuan, People’s Republic of China, Email
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Jinming Zhang, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, People’s Republic of China, Email
| |
Collapse
|
4
|
Huang X, Ge X, Wang Y. Single‐layer and double‐layer zein–gum arabic nanoencapsulations: Preparation, structural characterization, thermal properties, and controlled release in the gastrointestinal tract. J Food Sci 2022; 87:4580-4595. [DOI: 10.1111/1750-3841.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xueying Huang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou PR China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou PR China
| | - Yi Wang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou PR China
| |
Collapse
|
5
|
Ye W, Zhang G, Liu X, Ren Q, Huang F, Yan Y. Fabrication of polysaccharide-stabilized zein nanoparticles by flash nanoprecipitation for doxorubicin sustained release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Surface-Tailored Zein Nanoparticles: Strategies and Applications. Pharmaceutics 2021; 13:pharmaceutics13091354. [PMID: 34575430 PMCID: PMC8465254 DOI: 10.3390/pharmaceutics13091354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The ability of zein to carry various pharmaceutically active substances (PAS) position it as a valuable contender for several in vitro and in vivo applications. The unique structure and possibility of surface covering with distinct coating shells or even surface chemical modifications have enabled zein utilization in active targeted and site-specific drug delivery. This work summarizes up-to-date studies on zein formulation technology based on its structural features. Additionally, the multiple applications of zein, including drug delivery, cellular imaging, and tissue engineering, are discussed with a focus on zein-based active targeted delivery systems and antigenic response to its potential in vivo applicability.
Collapse
|
7
|
Dextran based amphiphilic self-assembled biopolymeric macromolecule synthesized via RAFT polymerization as indomethacin carrier. Int J Biol Macromol 2021; 183:718-726. [PMID: 33930447 DOI: 10.1016/j.ijbiomac.2021.04.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
This work demonstrates a facile pathway to develop a biopolymer based amphiphilic macromolecule through reversible addition-fragmentation chain transfer (RAFT) polymerization, using dextran (a biopolymer) as starting material. Also, a new hydrophobic monomer [2-methyl-acrylic acid 1-benzyl-1H-[1,2,3] triazol-4-ylmethyl ester (MABTE)] has been synthesized using methacrylic acid via "click" approach. The resultant copolymer displays controlled radical polymerization characteristics: narrow polydispersity (Ð) and controlled molecular weight as obtained through advanced polymer chromatography (APC) analysis. In aqueous solution, the copolymer can proficiently be self-assembled to provide micellar structure, which has been evidenced from field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses. The in-vitro cytotoxicity study illustrates the nontoxic nature of the copolymer up to 100 μg/mL polymer concentration. The copolymer has been found to be worthy as an efficient carrier for the sustained release of hydrophobic drug: Indomethacin (IND).
Collapse
|