1
|
Xiong X, Ma M, Zhang X, Qing S, Wang H, Wang J. Mechanism of Charged Graphene Substrate Effects on the Stability of Interfacial Nanobubbles: Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8038-8048. [PMID: 40097919 DOI: 10.1021/acs.langmuir.4c03986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Charged solid substrates play a crucial role in influencing the behavior of interfacial nanobubbles, although the underlying mechanisms are not yet fully understood. To explore this process in greater depth, we employed molecular dynamics (MD) simulations to systematically examine the effects of charged graphene on the morphological evolution, solid interface structure, and stability of interfacial nanobubbles, thereby revealing the intrinsic mechanisms. Our findings indicate that as surface charge density increases, the gas-solid interactions gradually diminish while the liquid-solid interactions significantly intensify. This results in a progressive reduction in both the contact angle and radius of the nanobubbles, eventually causing their detachment from the substrate and transformation to bulk-phase nanobubbles. Moreover, the enhanced gas accumulation effect at the solid interface leads to a reduction in the internal pressure of the bubbles, thus improving the stability of the interfacial nanobubbles. Additionally, the increase in the surface charge density elevates the water molecule density at the solid interface, which in turn strengthens the hydrogen bond network of interfacial water molecules, further stabilizing the liquid-solid interface structure. In summary, this study highlights the critical role of surface charge in regulating interfacial nanobubble behavior, providing new theoretical guidance for optimizing electrode materials and controlling bubble behavior in electrochemical systems.
Collapse
Affiliation(s)
- Xiaowen Xiong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Department of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Ming Ma
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Department of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xiaohui Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Department of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shan Qing
- Department of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Department of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Junxiao Wang
- Kunming Cigarette Factory, HongyunHonghe Tobacco (Group) Co. Ltd., Kunming 650000, China
| |
Collapse
|
2
|
Lan L, Pan Y, Zhou L, Kuang H, Zhang L, Wen B. Theoretical model of dynamics and stability of nanobubbles on heterogeneous surfaces. J Colloid Interface Sci 2025; 678:322-333. [PMID: 39208760 DOI: 10.1016/j.jcis.2024.08.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Surface nanobubbles have revealed a new mechanism of gas-liquid-solid interaction at the nanoscale; however, the nanobubble evolution on real substrates is still veiled, because the experimental observation of contact line motions at the nanoscale is too difficult. HYPOTHESIS This study proposes a theoretical model to describe the dynamics and stability of nanobubbles on heterogeneous substrates. It simultaneously considers the diffusive equilibrium of the liquid-gas interface and the mechanical equilibrium at the contact line, and introduces a surface energy function to express the substrate's heterogeneity. VALIDATION The present model unifies the nanoscale stability and the microscale instability of surface bubbles. The theoretical predictions are highly consistent to the nanobubble morphology on heterogeneous surfaces observed in experiments. As the nanobubbles grow, a lower Laplace pressure leads to weaker gas adsorption, and the mechanical equilibrium can eventually revert to the classical Young-Laplace equation above microscale. FINDINGS The analysis results indicate that both the decrease in substrate surface energy and the increase in gas oversaturation are more conducive to the nucleation and growth of surface nanobubbles, leading to larger stable sizes. The larger surface energy barriers result in the stronger pinning, which is beneficial for achieving stability of the pinned bubbles. The present model is able to reproduce the continual behaviors of the three-phase contact line during the nanobubble evolution, e.g., "pinning, depinning, slipping and jumping" induced by the nanoscale defects.
Collapse
Affiliation(s)
- Lili Lan
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yongcai Pan
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hua Kuang
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Binghai Wen
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China; Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
3
|
Mi S, Zhang Y, Ge W. Molecular Dynamics Study on the Storage of Carbon Dioxide in Single-Walled Carbon Nanotubes at Low Pressures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21855-21865. [PMID: 39348316 DOI: 10.1021/acs.langmuir.4c03177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The storage of carbon dioxide (CO2) in single-walled carbon nanotubes was studied with molecular dynamics simulation. The influences of the temperature, system average density, and nanotube size on the CO2 pressure, density distribution, and intermolecular forces were investigated. Multilayer adsorption inside nanotubes was observed as average density increases at lower pressures, which is desirable in industry. Meanwhile, a nanobubble was gradually formed in the center of the nanotube, and the system with the nanobubble was stabilized by the balance between the positive Laplace pressure and the negative liquid pressure when the size of the nanobubble was higher than the critical size. The adsorption effect of the nanotube wall leads to high local condensed density near the wall and stronger intermolecular repulsion, while Laplace pressure results in a low local condensed density in the adsorbed CO2 near the bubble interface and stronger intermolecular attraction. The stretching effect that originates from the intermolecular force dominated by attraction in the condensed phase leads to low pressure. At the critical nanobubble size, a higher CO2 average density can be achieved by lowering the temperature and increasing the nanotube radius or length. When the adsorption impact of the nanotube wall on bubble destabilization becomes negligible as the adsorption layer thickens, further increasing the nanotube radius leads to limited increase of the average density at the critical nanobubble size. The simulation of a graphene-sealed nanotube confirmed the formation of a vapor nanobubble under more realistic conditions. This work provides insights into utilizing carbon nanotubes as a material for CO2 capture with multilayer adsorption at lower pressures.
Collapse
Affiliation(s)
- Sheng Mi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Zhang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Ge
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Jonosono Y, Tsuda SI, Tokumasu T, Nagashima H. Molecular Dynamics Study of the Microscopic Mechanical Balance at the Three-Phase Contact Line of Interfacial Nanobubble. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8440-8449. [PMID: 38604804 DOI: 10.1021/acs.langmuir.3c04027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This study reveals the microscopic mechanical balance at the three-phase contact line (TPCL) of an interfacial nanobubble on a substrate with a wettability pattern using molecular dynamics simulations. The apparent contact angle was compared to that evaluated using Young's equation, in which the interfacial tensions were computed using a mechanical route. The comparison was conducted by changing the wettability of the substrate from hydrophilic to neutral while maintaining a hydrophobic region in the center of the substrate. When the wettability pattern pins the TPCL at the wettability boundary, the contact angle computed by Young's equation is larger than the apparent contact angle because a pinning force exists in the inward direction of the nanobubble. Conversely, on the surfaces where the wettability pattern does not pin the TPCL, the contact angle computed by Young's equation agrees with the apparent contact angle because the pinning force disappears. The distribution of principal stresses around the TPCL, which was visualized for the first time in this study, indicates that large compressive principal stresses exist between the liquid phase and the solid substrate interface, which pin the TPCL at the surface wettability boundary, and that the maximum principal stress occurs in the inward direction of the nanobubbles at the TPCL. The normalized pinning force estimated from the maximum principal stress is equivalent to that measured experimentally.
Collapse
Affiliation(s)
- Yusuke Jonosono
- Faculty of Engineering, University of the Ryukyus, 1, Senbaru, Nishihara-cho ,Okinawa 903-0213, Japan
| | - Shin-Ichi Tsuda
- Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Takashi Tokumasu
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroki Nagashima
- Faculty of Engineering, University of the Ryukyus, 1, Senbaru, Nishihara-cho ,Okinawa 903-0213, Japan
| |
Collapse
|
5
|
Zhao Z, Ma Y, Xie Z, Wu F, Fan J, Kou J. Molecular Mechanisms of the Generation and Accumulation of Gas at the Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38293869 DOI: 10.1021/acs.langmuir.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gas-evolving reactions are widespread in chemical and energy fields. However, the generated gas will accumulate at the interface, which reduces the rate of gas generation. Understanding the microscopic processes of the generation and accumulation of gas at the interface is crucial for improving the efficiency of gas generation. Here, we develop an algorithm to reproduce the process of catalytic gas generation at the molecular scale based on the all-atom molecular dynamics simulations and obtain the quantitative evolution of the gas generation, which agrees well with the experimental results. In addition, we demonstrate that under an external electric field, the generated gas molecules do not accumulate at the electrode surface, which implies that the electric field can significantly increase the rate of the gas generation. The results suggest that the external electric field changes the structure of the water molecules near the electrode surface, making it difficult for gas molecules to accumulate on the electrode surface. Furthermore, it is found that gas desorption from the electrode surface is an entropy-driven process, and its accumulation at the electrode surface depends mainly on the competition between the entropy and the enthalpy of the water molecules under the influence of the electric field. These results provide deep insight into gas generation and inhibition of gas accumulation.
Collapse
Affiliation(s)
- Zhigao Zhao
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yunqiu Ma
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Fengmin Wu
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jintu Fan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong 999077, China
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Li D, Gu J, Li Y, Zhang Z, Ji Y. Manipulating Trapped Nanobubbles Moving and Coalescing with Surface Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12991-12998. [PMID: 36228139 DOI: 10.1021/acs.langmuir.2c02593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Trapped nanobubbles are observed nucleating at nanopits on a pitted substrate, while surface nanobubbles are usually formed on the smooth solid surface in water. In this work, trapped nanobubbles and surface nanobubbles were captured by a tapping-mode atomic force microscope (AFM) on a nanopitted substrate based on the temperature difference method. A single trapped nanobubble was manipulated to change into a surface nanobubble, then to change into the trapped nanobubble again. At the same time, surface nanobubbles can be moved to merge into a trapped nanobubble. Our results show that the scan load and the size of the scan area were the main factors that significantly affect the mobility of surface/trapped nanobubbles. The coalescence and mutual transformation of the two kinds of nanobubbles indicate that trapped nanobubbles and surface nanobubbles have the same chemical nature, which also provides vital experimental proof of the existence of nanobubbles in the course of contact line depinning. Our results are of great significance for understanding nanobubble stability and providing guidelines in some industrial applications.
Collapse
Affiliation(s)
- Dayong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Juan Gu
- School of Mathematics and Information Science, Yantai University, Yantai 264005, China
| | - Yong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Ziqun Zhang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yutong Ji
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
Hewage SA, Meegoda JN. Molecular Dynamics Simulation Of Bulk Nanobubbles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Teshima H, Kusudo H, Bistafa C, Yamaguchi Y. Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain? NANOSCALE 2022; 14:2446-2455. [PMID: 35098963 DOI: 10.1039/d1nr07428h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanobubbles at solid-liquid interfaces play a key role in various physicochemical phenomena and it is crucial to understand their unique properties. However, little is known about their interfacial tensions due to the lack of reliable calculation methods. Based on mechanical and thermodynamic insights, we quantified for the first time the liquid-gas, solid-liquid, and solid-gas interfacial tensions of submicron-sized nitrogen bubbles at graphite-water interfaces using molecular dynamics (MD) analysis. It was revealed that Young's equation holds even for nanobubbles with different radii. We found that the liquid-gas and solid-liquid interfacial tensions were not largely affected by the gas density inside the nanobubbles. In contrast, the size effect on the solid-gas interfacial tension was observed, namely, the value dramatically decreased upon an increase in the gas density due to gas adsorption on the solid surface. However, our quantitative evaluation also revealed that the gas density effect on the contact angles is negligible when the footprint radius is larger than 50 nm, which is a typical range observed in experiments, and thus the flat shape and stabilization of submicron-sized surface bubbles observed in experiments cannot be explained only by the changes in interfacial tensions due to the van der Waals interaction-induced gas adsorption, namely by Young's equation without introducing the pinning effect. Based on our analysis, it was clarified that additional factors such as the differences in the studied systems are needed to explain the unresolved open issues - a satisfactory explanation for the nanobubbles in MD simulations being ultradense, non-flat, and stable without pinning.
Collapse
Affiliation(s)
- Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, Nishi-Ku, Motooka 744, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi-Ku, Motooka 744, Fukuoka 819-0395, Japan
| | - Hiroki Kusudo
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
| | - Carlos Bistafa
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
| | - Yasutaka Yamaguchi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
- Water Frontier Research Center (WaTUS), Tokyo University of Science, Shinjuku-Ku, Kagurazaka 1-3, 162-8601, Japan
| |
Collapse
|
9
|
Dockar D, Gibelli L, Borg MK. Shock-induced collapse of surface nanobubbles. SOFT MATTER 2021; 17:6884-6898. [PMID: 34231638 DOI: 10.1039/d1sm00498k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The collapse of cavitation bubbles often releases high-speed liquid jets capable of surface damage, with applications in drug delivery, cancer treatment, and surface cleaning. Spherical cap-shaped surface nanobubbles have previously been found to exist on immersed substrates. Despite being known nucleation sites for cavitation, their collapsing dynamics are currently unexplored. Here, we use molecular dynamics simulations to model the shock-induced collapse of different surface nanobubble sizes and contact angles. Comparisons are made with additional collapsing spherical nanobubble simulations near a substrate, to investigate the differences in their jet formation and resulting substrate pitting damage. Our main finding is that the pitting damage in the surface nanobubble simulations is greatly reduced, when compared to the spherical nanobubbles, which is primarily caused by the weaker jets formed during their collapse. Furthermore, the pit depths for surface nanobubble collapse do not depend on bubble size, unlike in the spherical nanobubble cases, but instead depend only on their contact angle. We also find a linear scaling relationship for all bubble cases between the final substrate damage and the peak pressure impulse at the impact centre, which can now be exploited to assess the relative damage in other computational studies of collapsing bubbles. We anticipate the more controlled surface-damage features produced by surface nanobubble cavitation jets will open up new applications in advanced manufacturing, medicine, and precision cleaning.
Collapse
Affiliation(s)
- Duncan Dockar
- School of Engineering, Institute of Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FB, UK.
| | - Livio Gibelli
- School of Engineering, Institute of Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FB, UK.
| | - Matthew K Borg
- School of Engineering, Institute of Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FB, UK.
| |
Collapse
|
10
|
Zhang F, Sun L, Yang H, Gui X, Schönherr H, Kappl M, Cao Y, Xing Y. Recent advances for understanding the role of nanobubbles in particles flotation. Adv Colloid Interface Sci 2021; 291:102403. [PMID: 33780858 DOI: 10.1016/j.cis.2021.102403] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Traditional froth flotation is the primary method for the separation and upgrading of fine mineral particles. However, it is still difficult for micro-fine and low-quality minerals to effectively separate. It is generally believed that bubble miniaturization is of great significance to improve flotation efficiency. Due to their unique physical and chemical properties, the application of nanobubbles (NBs) in ore flotation and other fields has been widely investigated as an important means to solve the problems of fine particle separation. Therefore, a fundamental understanding of the effect of NBs on flotation is a prerequisite to adapt it for the treatment of fine and low-quality minerals for separation. In this paper, recent advances in the field of nanobubble (NB) formation, preparation and stability are reviewed. In particular, we highlight the latest progress in the role of NBs on particles flotation and focus in particular on the particle-particle and particle-bubble interaction. A discussion of the current knowledge gap and future directions is provided.
Collapse
Affiliation(s)
- Fanfan Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Lijuan Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Haichang Yang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xiahui Gui
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen 57076, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yijun Cao
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450066, Henan, China).
| | - Yaowen Xing
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
11
|
Yen TH, Lin CH, Chen YL. Effects of Gas Adsorption and Surface Conditions on Interfacial Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2759-2770. [PMID: 33595315 DOI: 10.1021/acs.langmuir.0c03511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas aggregation and formation of interfacial nanobubbles (INBs) provide challenges and opportunities in the operation of micro-/nanofluidic devices. In the current study, we used molecular dynamics(MD) simulations to investigate the effects of hydrophobicity and various homogeneous surface conditions on gas aggregation and INB stability with a series of 3D argon-water-solid and water-solid systems. Among various signatures of surface hydrophobicity, the potential of mean force (PMF) minima exhibited the strongest correlation with the water molecular orientation at the liquid-solid interface, compared to the depletion layer width and the droplet contact angle. Our results indicated that argon aggregation on the substrate was a function of hydrophobicity as well as competition between gas-solid and water-solid PMFs. Thus, one precondition for gas aggregation on a surface is that the free energy minima of gas induced by the surface be much lower than that induced by water. We found that although the presence of gas molecules had little effect on the measures of wettability, it enhanced density fluctuations near liquid-solid interfaces. The PMF of gas along the surface tangential plane exhibited a small energy barrier between the epitaxial gas layer (EGL) in the bubble and the gas enrichment layer (GEL) in the liquid, which may benefit nanobubble stability. Much lower PMF in the EGL compared to that in the GEL indicated that gas molecules could migrate from the GEL to the nanobubble basement. However, density fluctuations enhanced by the GEL could reduce the energy barrier, thus reducing the stability of INBs.
Collapse
Affiliation(s)
- Tsu-Hsu Yen
- Department of Marine Science, ROC Naval Academy, Zuoying, Kaohsiung, Taiwan, ROC
| | - Chia-He Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yeng-Long Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, 300027 Taiwan, ROC
- Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
12
|
Yen TH. Influence of gas aggregation on water-solid interface: molecular simulation. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tsu-Hsu Yen
- Department of Marine Science, R.O.C. Naval Academy, Kaohsiung, Taiwan, Republic of China (R.O.C.)
| |
Collapse
|
13
|
Liu Y, Bernardi S, Widmer-Cooper A. Stability of pinned surface nanobubbles against expansion: Insights from theory and simulation. J Chem Phys 2020; 153:024704. [PMID: 32668938 DOI: 10.1063/5.0013223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While growth and dissolution of surface nanobubbles have been widely studied in recent years, their stability under pressure changes or a temperature increase has not received the same level of scrutiny. Here, we present theoretical predictions based on classical theory for pressure and temperature thresholds (pc and Tc) at which unstable growth occurs for the case of air nanobubbles on a solid surface in water. We show that bubbles subjected to pinning have much lower pc and higher Tc compared to both unpinned and bulk bubbles of similar size, indicating that pinned bubbles can withstand a larger tensile stress (negative pressure) and higher temperatures. The values of pc and Tc obtained from many-body dissipative particle dynamics simulations of quasi-two-dimensional (quasi-2D) surface nanobubbles are consistent with the theoretical predictions, provided that the lateral expansion during growth is taken into account. This suggests that the modified classical thermodynamic description is valid for pinned bubbles as small as several nanometers. While some discrepancies still exist between our theoretical results and previous experiments, further experimental data are needed before a comprehensive understanding of the stability of surface nanobubbles can be achieved.
Collapse
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stefano Bernardi
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Theodorakis PE, Che Z. Surface nanobubbles: Theory, simulation, and experiment. A review. Adv Colloid Interface Sci 2019; 272:101995. [PMID: 31394435 DOI: 10.1016/j.cis.2019.101995] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023]
Abstract
Surface nanobubbles (NBs) are stable gaseous phases in liquids that form at the interface with solid substrates. They have been particularly intriguing for their high stability that contradicts theoretical expectations and their potential relevance for many technological applications. Here, we present the current state of the art in this research area by discussing and contrasting main results obtained from theory, simulation and experiment, and presenting their limitations. We also provide future perspectives anticipating that this review will stimulate further studies in the research area of surface NBs.
Collapse
|
15
|
Li D, Qi L, Liu Y, Bhushan B, Gu J, Dong J. Study on the Formation and Properties of Trapped Nanobubbles and Surface Nanobubbles by Spontaneous and Temperature Difference Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12035-12041. [PMID: 31424216 DOI: 10.1021/acs.langmuir.9b02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trapped nanobubbles are gas domains trapped at nanopits on the solid-liquid interface. This is different from surface nanobubbles that usually form at the smooth surface. Herein, both trapped nanobubbles and surface nanobubbles formed on the nanopitted polystyrene film were studied by a spontaneous formation method and a temperature difference method. Trapped nanobubbles behave more flexibly than surface nanobubbles under different scanning loads. The nanopits under trapped nanobubbles appear after being subjected to large force scanning, and both trapped nanobubbles and surface nanobubbles can recover after reducing the scan load. The contact angles of the two kinds of nanobubbles were calculated and were found to be approximately constant. Configurations of trapped nanobubbles including under the pit mouth, protruding out but pinning at the pit mouth, and protruding out and extending around the pit mouth were experimentally observed. Gas oversaturation in the liquid after replacing the low-temperature water with high-temperature water was evaluated and was found to be a key factor for nanobubble formation and led to trapped nanobubbles protruding out and extending. Our study should be helpful in understanding the formation mechanism and properties of trapped nanobubbles and surface nanobubbles, and it will also be useful for further research on the control of nanobubble distribution.
Collapse
Affiliation(s)
- Dayong Li
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) , The Ohio State University , 201 W. 19th Avenue , Columbus , Ohio 43210-1142 , United States
| | | | | | - Bharat Bhushan
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) , The Ohio State University , 201 W. 19th Avenue , Columbus , Ohio 43210-1142 , United States
| | | | | |
Collapse
|
16
|
Guo Z, Wang X, Zhang X. Stability of Surface Nanobubbles without Contact Line Pinning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8482-8489. [PMID: 31141370 DOI: 10.1021/acs.langmuir.9b00772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the stability of most surface nanobubbles observed can be well interpreted by contact line pinning and supersaturation theory, there is increasing evidence that at least for certain situations, contact line pinning is not required for nanobubble stability. This raises a significant question of what is the stability mechanism for those sessile nanobubbles. Through theoretical analysis and molecular dynamics simulations, in this work, we report two mechanisms for stabilizing surface nanobubbles on flat and homogeneous substrates. One is attributed to constant adsorption of trace impurities on the nanobubble gas?liquid interface, through which nanobubble growing or shrinking causes the increase and decrease of interfacial tension, acting as a restoring force to bring the nanobubble to its equilibrium size. The other is attributed to the deformation of a soft substrate induced by the formed nanobubble, which in turn stabilizes the nanobubble via impeding the contact line motion, similar to self-pinning of microdroplets on soft substrates. Both mechanisms can interpret, depending on the specified conditions, how surface nanobubbles can remain stable in the absence of contact line pinning.
Collapse
Affiliation(s)
- Zhenjiang Guo
- State Key Laboratory of Organic?Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xian Wang
- State Key Laboratory of Organic?Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xianren Zhang
- State Key Laboratory of Organic?Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
17
|
Tan BH, An H, Ohl CD. Stability, Dynamics, and Tolerance to Undersaturation of Surface Nanobubbles. PHYSICAL REVIEW LETTERS 2019; 122:134502. [PMID: 31012604 DOI: 10.1103/physrevlett.122.134502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The theoretical understanding of surface nanobubbles-nanoscale gaseous domains on immersed substrates-revolves around two contrasting perspectives. One perspective, which considers gas transport in the nanobubbles' vicinity, explains numerous stability-related properties but systematically underestimates the dynamical response timescale by orders of magnitude. The other perspective, which considers gas transport as the bulk liquid equilibrates with the external environment, recovers the experimentally observed dynamical timescale but incorrectly predicts that nanobubbles progressively shrink until dissolution. We propose a model that couples both perspectives, which is capable of explaining the stability, dynamics, and unexpected tolerance of surface nanobubbles to undersaturated environments.
Collapse
Affiliation(s)
- Beng Hau Tan
- Low Energy Electronic Systems, Singapore-MIT Alliance for Research and Technology, 1 Create Way, 138602 Singapore
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| |
Collapse
|