1
|
Zhang H, Tang P, Hu S, Yang K, Tang M, Feng W, Wang Q, Zhan H. The adsorption behavior of perfluorooctane sulphonate on diamane regulated by strain. CHEMOSPHERE 2024; 362:142581. [PMID: 38866338 DOI: 10.1016/j.chemosphere.2024.142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The adsorption of per- and polyfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS), is currently a critical issue in the environmental domain, yet it is not fully understood. Diamane, as a stable monolayer adsorbent, has garnered significant research interest. Defects and strain are reported to play a crucial role in regulating its electronic structure. In this study, we employ density functional theory (DFT) calculations to investigate the adsorption of PFOS on both pristine and nitrogen-vacancy (N-V) defected diamane, respectively. Additionally, we systematically examine the effects of strain in diamane along both the a- and b-directions (two directions of a monolayer) on PFOS adsorption. This analysis involves studying the adsorption energy (Eads), electron transfer, and the partial density of states. Finally, we propose the synergistic effects of N-V defects and compression strain in diamane, which enhance PFOS adsorption. Diamane is considered a promising candidate for PFOS sensing or capture.
Collapse
Affiliation(s)
- Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China.
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Shuchun Hu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis 38105, USA
| | - Wei Feng
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China
| | - Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| |
Collapse
|
2
|
Tang M, Burgess JT, Fisher M, Boucher D, Bolderson E, Gandhi NS, O'Byrne KJ, Richard DJ, Suraweera A. Targeting the COMMD4-H2B protein complex in lung cancer. Br J Cancer 2023; 129:2014-2024. [PMID: 37914802 PMCID: PMC10703884 DOI: 10.1038/s41416-023-02476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.
Collapse
Affiliation(s)
- Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark Fisher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Didier Boucher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Neha S Gandhi
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Derek J Richard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Amila Suraweera
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Li Y, Yang J, He X. Characterizing polyproline II conformational change of collagen superhelix unit on adsorption on gold surface. NANOSCALE ADVANCES 2023; 5:5322-5331. [PMID: 37767030 PMCID: PMC10521299 DOI: 10.1039/d3na00185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The dynamic process of protein binding onto a metal surface is a frequent occurrence as gold nanoparticles are increasingly being used in biomedical applications, including wound treatment and drug transport. Collagen, as a major component of the extracellular matrix, has potentially advantageous biomedical applications, due to its excellent biocompatibility and elasticity properties. Therefore, a mechanistic comprehension of how and which species in collagen interact with gold nanoparticles is a prerequisite for collagen-gold complexes in clinical application. However, the dynamic behavior of collagen with the polyproline II (PPII) conformation on gold sheets at the molecular level is too complex to capture under current experimental conditions. Here, using molecular dynamics simulations, we investigate the adsorption process and conformational behavior of the tripeptide Gly-Pro-Hyp with the repetitive unit of the collagen superhelix on the gold surface as a function of number of repeating units from 1 to 10. The different numbers of repeating units all prefer to approach the gold surface and adsorb via charged residues at the C-terminal or N-terminal ends, tending to form arch structures on the gold surface. Compared with the various tripeptide units in solution still retaining the native PPII conformation, the presence of the gold surface affects the formation of hydrogen bonds between the protein and water molecules, thus disrupting the PPII conformation of collagen. Specifically, the interaction between the gold surface and HYP limits the rotation of the dihedral angle of collagen, resulting in a tendency for the PPII conformation of the gold surface to transform to the β-sheet conformation. The results provide an indication of how to improve the interaction between the terminal groups and the gold surface for the design of a bioavailable protein-gold material for medicinal purposes.
Collapse
Affiliation(s)
- Yuntao Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai Shanghai 200062 China
| |
Collapse
|
4
|
Tang M, Suraweera A, Nie X, Li Z, Lai P, Wells JW, O'Byrne KJ, Woods RJ, Bolderson E, Richard DJ. Mono-phosphorylation at Ser4 of barrier-to-autointegration factor (Banf1) significantly reduces its DNA binding capability by inducing critical changes in its local conformation and DNA binding surface. Phys Chem Chem Phys 2023; 25:24657-24677. [PMID: 37665626 DOI: 10.1039/d3cp02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1. It was observed decades ago that mono-phosphorylated Banf1 cannot bind to DNA. However, the underlying molecular- and atomic-level mechanisms remain unclear. A clear understanding of these mechanisms will aid in interfering with the cell proliferation process for better global health. Herein, we explored the detailed atomic bases of unphosphorylated Banf1-DNA binding and how mono- and di-phosphorylation of Banf1 impair these atomic bases to eliminate its DNA-binding capability, followed by exploring the DNA-binding capability of mono- and di-phosphorylation Banf1, using comprehensive and systematic molecular modelling and molecular dynamics simulations. This work presented in detail the residue-level binding energies, hydrogen bonds and water bridges between Banf1 and DNA, some of which have not been reported. Moreover, we revealed that mono-phosphorylation of Banf1 causes its N-terminal secondary structure changes, which in turn induce significant changes in Banf1's DNA binding surface, thus eliminating its DNA-binding capability. At the atomic level, we also uncovered the alterations in interactions due to the induction of mono-phosphorylation that result in the N-terminal secondary structure changes of Banf1. Additionally, our modelling showed that phosphorylated Banf1 with their dominant N-terminal secondary structures bind to DNA with a significantly lower affinity and the docked binding pose are not stable in MD simulations. These findings help future studies in predicting effect of mutations in Banf1 on its DNA-binding capability and open a novel avenue for the development of therapeutics such as cancer drugs, targeting cell proliferation by inducing conformational changes in Banf1's N-terminal domain.
Collapse
Affiliation(s)
- Ming Tang
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- Faculty of Medicine, Frazer Institute, The University of Queensland at the Translational Research Institute Australia, Brisbane, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| | - Xuqiang Nie
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- College of Pharmacy, Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zilin Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Pinglin Lai
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - James W Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland at the Translational Research Institute Australia, Brisbane, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- Princess Alexandra Hospital, Brisbane, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Centre, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| | - Derek J Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| |
Collapse
|
5
|
Sun Q, Zeng Y, Yu Y, Wang YN, Shi B. An exploration of enhancing thermal stability of leather by hydrophilicity regulation: effect of hydrophilicity of phenolic syntan. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractEffect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the corresponding mechanism remain unclear. Herein, phenolic formaldehyde syntans (PFSs) were selected as models to explore the effect of the hydrophilicity of retanning agents on the thermal stability of retanned leather. The thermal stability of leather was closely correlated to the hydrophilic group content (sulfonation degree) of PFSs. As the sulfonation degree increased, the water absorption rate of PFSs and their retanned leathers decreased, whereas the thermal stability of leather increased. Molecular dynamics simulation results proved that the introduction of PFSs could reduce the binding ability of collagen molecules with water and thus decreased the water molecules around the PFS-treated collagen. These results may provide guidance for the tanners to select retanning agents reasonably to improve the thermal stability of leather.
Graphical Abstract
Collapse
|
6
|
Ting MS, Vella J, Raos BJ, Narasimhan BN, Svirskis D, Travas-Sejdic J, Malmström J. Conducting polymer hydrogels with electrically-tuneable mechanical properties as dynamic cell culture substrates. BIOMATERIALS ADVANCES 2022; 134:112559. [PMID: 35527144 DOI: 10.1016/j.msec.2021.112559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
Hydrogels are a popular substrate for cell culture due to their mechanical properties closely resembling natural tissue. Stimuli-responsive hydrogels are a good platform for studying cell response to dynamic stimuli. Poly(N-isopropylacrylamide) (pNIPAM) is a thermo-responsive polymer that undergoes a volume-phase transition when heated to 32 °C. Conducting polymers can be incorporated into hydrogels to introduce electrically responsive properties. The conducting polymer, polypyrrole (PPy), has been widely studied as electrochemical actuators due to its electrochemical stability, fast actuation and high strains. We determine the volume-phase transition temperature of pNIPAM hydrogels with PPy electropolymerised with different salts as a film within the hydrogel network. We also investigate the electro-mechanical properties at the transition temperature (32 °C) and physiological temperature (37 °C). We show statistically significant differences in the Young's modulus of the hybrid hydrogel at elevated temperatures upon electrochemical stimulation, with a 5 kPa difference at the transition temperature. Furthermore, we show a three-fold increase in actuation at transition temperature compared to room temperature and physiological temperature, attributed to the movement of ions in/out of the PPy film that induce the volume-phase transition of the pNIPAM hydrogel. Furthermore, cell adhesion to the hybrid hydrogel was demonstrated with mouse articular chondrocytes.
Collapse
Affiliation(s)
- Matthew S Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Polymer Biointerface Centre, The University of Auckland, Auckland, New Zealand
| | - Joseph Vella
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jadranka Travas-Sejdic
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Polymer Biointerface Centre, The University of Auckland, Auckland, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Polymer Biointerface Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Kruchinin NY, Kucherenko MG. Conformational Changes of Polyelectrolyte Macromolecules on the Surface of Charged Prolate Metal Nanospheroid in Alternating Electric Field. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x2203004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Kruchinin NY, Kucherenko MG. Molecular Dynamics Simulation of Conformational Rearrangements in Polyelectrolyte Macromolecules on the Surface of a Charged or Polarized Prolate Spheroidal Metal Nanoparticle. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Interaction between organic molecules and a gold nanoparticle: a quantum chemical topological analysis. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Wang H, Yuan H, Wang J, Zhang E, Bai M, Sun Y, Wang J, Zhu S, Zheng Y, Guan S. Influence of the second phase on protein adsorption on biodegradable Mg alloys' surfaces: Comparative experimental and molecular dynamics simulation studies. Acta Biomater 2021; 129:323-332. [PMID: 33831575 DOI: 10.1016/j.actbio.2021.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 01/19/2023]
Abstract
The effect of the second phase on the mechanical properties and corrosion resistance of Mg alloys has been systematically studied. However, there is limited information on the effect of the second phase on protein adsorption behavior. In the present study, the effect of the second phase on protein adsorption on the surfaces of biodegradable Mg alloys was investigated using experimental methods and molecular dynamics (MD) simulations. The experimental results showed that the effect of the second phase on fibrinogen adsorption was type-dependent. Fibrinogen preferentially adsorbed on Y-, Ce-, or Nd-involved second phases, while the second phase containing Zn inhibited its adsorption. MD simulations revealed the mechanism of the second phase that influenced protein adsorption in terms of charge distribution, surface-protein interaction energy, and water molecule distribution. Our studies proposed a deep understanding of the design of Mg-based biomaterials with superior biocompatibility. STATEMENT OF SIGNIFICANCE: Mechanical properties, uniform degradation, and biocompatibility must be considered while designing biomedical Mg alloys. To improve the mechanical properties and corrosion resistance of Mg alloys, the second phase is usually required. However, the effects of the second phase on biocompatibility of Mg alloys have been rarely reported. Here, the influence of the second phase on protein adsorption was experimentally studied by designing Mg alloys with different types of second phase. The first principle calculation and MD simulation were used to reveal the mechanism by which the second phase influences protein adsorption. This work could be used to better elucidate the protein adsorption mechanisms and design principles to improve the biocompatibility of Mg alloys.
Collapse
Affiliation(s)
- Hongyan Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haonan Yuan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jinming Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Engui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyun Bai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yufeng Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shijie Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Tandiana R, Brun E, Sicard-Roselli C, Domin D, Van-Oanh NT, Clavaguéra C. Probing the structural properties of the water solvation shell around gold nanoparticles: A computational study. J Chem Phys 2021; 154:044706. [DOI: 10.1063/5.0037551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Rika Tandiana
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Cécile Sicard-Roselli
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Dominik Domin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Nguyen-Thi Van-Oanh
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
12
|
|
13
|
Deguchi S, Yokoyama R, Maki T, Tomita K, Osugi R, Hakamada M, Mabuchi M. A new mechanism for reduced cell adhesion: Adsorption dynamics of collagen on a nanoporous gold surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111461. [PMID: 33321592 DOI: 10.1016/j.msec.2020.111461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 11/24/2022]
Abstract
Nanostructured materials such as nanoparticles and nanoporous materials strongly affect cell behaviors such as cell viability. Because cellular uptake of nanoporous materials does not occur, mechanisms for the effects of nanoporous materials on cells are different from those of nanoparticles. The effects of nanoporous materials on cells are thought to result from large conformational changes in the extracellular matrix (ECM) induced by the nanoporous materials, although the mechanotransduction and the critical focal adhesion cluster size also have an effect on the cell response. However, we show that the adhesion of mesenchymal stem cells to a gold surface is reduced for nanoporous gold (NPG), despite the conformational changes in collagen induced by NPG being below the detection limits of the experimental analyses. The adsorption dynamics of collagen on NPG are investigated by molecular dynamics simulations to determine the origin of the reduced cell adhesion to NPG. The adsorption energy of collagen on NPG is lower than that on flat gold (FG) despite there being little difference between the global conformation of collagen segments adsorbed on NPG compared with FG. This finding is related to the surface strain of NPG and the limited movement of collagen amino acids owing to interchain hydrogen bonds. The results obtained in this study provide new insight into the interactions between nanostructured materials and the ECM.
Collapse
Affiliation(s)
- Soichiro Deguchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan.
| | - Ryo Yokoyama
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Takuya Maki
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Kazuki Tomita
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Ryosuke Osugi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| |
Collapse
|
14
|
Tang M, Wang X, Gandhi NS, Foley BL, Burrage K, Woods RJ, Gu Y. Effect of hydroxylysine-O-glycosylation on the structure of type I collagen molecule: A computational study. Glycobiology 2020; 30:830-843. [PMID: 32188979 PMCID: PMC7526737 DOI: 10.1093/glycob/cwaa026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.
Collapse
Affiliation(s)
- Ming Tang
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| | - Xiaocong Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Neha S Gandhi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
| | | | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane 4001, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - YuanTong Gu
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| |
Collapse
|
15
|
Tietz C, Sekulla M, Yang X, Schmid R, Richter M. Linking Fluid Densimetry and Molecular Simulation: Adsorption Behavior of Carbon Dioxide on Planar Gold Surfaces. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Tietz
- Applied Thermodynamics, Chemnitz University of Technology, Chemnitz 09107, Germany
| | - Markus Sekulla
- Applied Thermodynamics, Chemnitz University of Technology, Chemnitz 09107, Germany
| | - Xiaoxian Yang
- Fluid Science & Resources Division, School of Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Rochus Schmid
- Computational Materials Chemistry Group, Ruhr University Bochum, Bochum 44801, Germany
| | - Markus Richter
- Applied Thermodynamics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Fluid Science & Resources Division, School of Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|