1
|
Wang J, Li J, Wang Y, Li Z, Zhang J. Polymerization-Induced Self-Assembly of Comb-like Amphiphilic Copolymers into Onion-like Vesicles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yining Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| |
Collapse
|
2
|
Lv Y, Wang L, Liu F, Feng W, Wei J, Lin S. Rod-coil block copolymer aggregates via polymerization-induced self-assembly. SOFT MATTER 2020; 16:3466-3475. [PMID: 32207755 DOI: 10.1039/d0sm00244e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymerization-induced self-assembly (PISA), incorporating the polymerization with in situ self-assembly, can achieve nano-objects efficiently. However, the cooperative polymerization and self-assembly lead to unclear polymerization kinetics and aggregation behavior, especially for the systems forming rigid chains. Here, we used dissipative particle dynamics simulations with a probability-based reaction model to explore the PISA behavior of rod-coil block copolymer systems. The impact of the length of macromolecular initiators, the targeted length of rigid chains, and the reaction probability on the PISA behavior, including polymerization kinetics and self-assembly, were examined. The difference between PISA and traditional self-assembly was revealed. A comparison with experimental observations shows that the simulation can capture the essential feature of the PISA. The present work provides a comprehensive understanding of rod-coil PISA systems and may provide meaningful information for future experimental research.
Collapse
Affiliation(s)
- Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|