1
|
Baradaran Kayyal T, Tucker J, Lowrance CM, Ajiboye L, Pelton M, Bennett JW, Daniel MC. Oleic acid rearrangement enables facile transfer of red-emitting quantum dots from hexane into water with enhanced fluorescence. NANOSCALE 2025; 17:12894-12910. [PMID: 40326867 DOI: 10.1039/d5nr00246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
There is significant demand for the conversion of hydrophobic nanoparticles (NPs) into water-soluble NPs, particularly for the transfer of photoluminescent quantum dots (QDs) synthesized in organic solvents into water-based settings. However, these transfer processes are often inefficient, with only a fraction of the QDs transferred into water, and typically result in decreases in photoluminescence quantum yield (PLQY). Here, we demonstrate a straightforward technique to efficiently transfer oleic acid (OA)-coated CdSe/CdS core-shell QDs into water without the addition of any new reagents. In contrast to the decrease in PLQY that is usually observed when QDs are transferred into water, this process in fact leads to an increase of the PLQY after transfer in basic water (pH 8). The process is highly reproducible and can be applied to other oleic acid-coated NPs. Density-functional-theory (DFT) calculations indicate that the QD transfer into water is enabled by the rearrangement of OA ligands at the surface of the QDs. This discovery allows for widely available, hydrophobic OA-coated QDs to be used in water media without any further modification and with enhanced fluorescence.
Collapse
Affiliation(s)
- Tohid Baradaran Kayyal
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
| | - Jasper Tucker
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
| | - Chanda M Lowrance
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
| | - Lekan Ajiboye
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
- Department of Physics, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA
| | - Joseph W Bennett
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
| | - Marie-Christine Daniel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, USA.
| |
Collapse
|
2
|
Hamidu A, Pitt WG, Husseini GA. Recent Breakthroughs in Using Quantum Dots for Cancer Imaging and Drug Delivery Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2566. [PMID: 37764594 PMCID: PMC10535728 DOI: 10.3390/nano13182566] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Because each person's cancer may be unique, diagnosing and treating cancer is challenging. Advances in nanomedicine have made it possible to detect tumors and quickly investigate tumor cells at a cellular level in contrast to prior diagnostic techniques. Quantum dots (QDs) are functional nanoparticles reported to be useful for diagnosis. QDs are semiconducting tiny nanocrystals, 2-10 nm in diameter, with exceptional and useful optoelectronic properties that can be tailored to sensitively report on their environment. This review highlights these exceptional semiconducting QDs and their properties and synthesis methods when used in cancer diagnostics. The conjugation of reporting or binding molecules to the QD surface is discussed. This review summarizes the most recent advances in using QDs for in vitro imaging, in vivo imaging, and targeted drug delivery platforms in cancer applications.
Collapse
Affiliation(s)
- Aisha Hamidu
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
3
|
Issa A, Ritacco T, Ge D, Broussier A, Lio GE, Giocondo M, Blaize S, Nguyen TH, Dinh XQ, Couteau C, Bachelot R, Jradi S. Quantum Dot Transfer from the Organic Phase to Acrylic Monomers for the Controlled Integration of Single-Photon Sources by Photopolymerization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37191386 DOI: 10.1021/acsami.2c22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.
Collapse
Affiliation(s)
- Ali Issa
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Tiziana Ritacco
- CNR Nanotec-Institute of Nanotechnology, S.S. Cosenza, Cubo 31C, Rende, CS 87036, Italy
- Department of Physics, University of Calabria, Cubo 33B, Rende, CS 87036, Italy
| | - Dandan Ge
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Aurelie Broussier
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Giuseppe Emanuele Lio
- CNR Nanotec-Institute of Nanotechnology, S.S. Cosenza, Cubo 31C, Rende, CS 87036, Italy
| | - Michele Giocondo
- CNR Nanotec-Institute of Nanotechnology, S.S. Cosenza, Cubo 31C, Rende, CS 87036, Italy
| | - Sylvain Blaize
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Tien Hoa Nguyen
- Shanghai University (SHU), Sino-European School of Shanghai University, Shanghai 2000072, China
| | - Xuan Quyen Dinh
- Shanghai University (SHU), Sino-European School of Shanghai University, Shanghai 2000072, China
| | - Christophe Couteau
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Renaud Bachelot
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
- Key Lab of Advanced Display and System Application, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China
| | - Safi Jradi
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| |
Collapse
|
4
|
Yu YQ, Chen WQ, Li XH, Liu M, He XH, Liu Y, Jiang FL. Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3967-3978. [PMID: 36877959 DOI: 10.1021/acs.langmuir.2c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal quantum dots (QDs) are a class of representative fluorescent nanomaterials with tunable, bright, and sharp fluorescent emission, with promising biomedical applications. However, their effects on biological systems are not fully elucidated. In this work, we investigated the interactions between QDs with different surface ligands and different particle sizes and α-chymotrypsin (ChT) from the thermodynamic and kinetic perspectives. Enzymatic activity experiments demonstrated that the catalytic activity of ChT was strongly inhibited by QDs coated with dihydrolipoic acid (DHLA-QDs) with noncompetitive inhibitions, whereas the QDs coated with glutathione (GSH-QDs) had weak effects. Furthermore, kinetics studies showed that different particle sizes of DHLA-QDs all had high suppressive effects on the catalytic activity of ChT. It was found that DHLA-QDs with larger particle sizes had stronger inhibition effects because more ChT molecules were bound onto the surface of QDs. This work highlights the importance of hydrophobic ligands and particle sizes of QDs, which should be considered as the primary influencing factors in the assessment of biosafety. Meanwhile, the results herein can also inspire the design of nano inhibitors.
Collapse
Affiliation(s)
- Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Han Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
5
|
Karmakar S, Das TK, Kalarikkal N, Saha A. A Simplified Approach for the Aqueous Synthesis of Luminescent CdSe/ZnS Core/Shell Quantum Dots and Their Applications in Ultrasensitive Determination of the Biomarker 3-Nitro-l-tyrosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15995-16003. [PMID: 36512759 DOI: 10.1021/acs.langmuir.2c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In contrast to the hot-injection organometallic routes, synthesizing stable and highly luminescent core/shell nanocrystals with encapsulation of biocompatible groups through an aqueous route is a long-standing challenge. In recent years, relatively high quantum efficiency and unique properties of core/shell nanostructured materials (quantum dots) have contributed toward enhancement in sensing capability. The present work reports a facile aqueous synthesis process of core/shell CdSe/ZnS quantum dots (QDs) with encapsulation of glutathione (GSH). The optimal conditions for the synthesis of the most stable particles were ascertained, and the different experimental analyses suggest that the stable core/shell QDs in question have good crystallinity with a size around 4.7 nm with a shell thickness of 0.7 nm and a photoluminescence quantum yield of about 35%. Further, it is demonstrated that the as-synthesized material has great potential in detecting as low as 0.28 nM 3-nitro-l-tyrosine (3-NT), an important marker for oxidative stress, the level of which in our body signals several chronically diseased conditions. The enthalpy-driven interactions of CdSe/ZnS-GSH QDs with 3-NT were characterized through steady-state and time-resolved luminescence spectroscopy and isothermal microcalorimetry. The devised method of probing 3-NT was further validated with human serum samples. Thus, the proposed strategy may provide a protocol for selective determination of 3-NT under different pathological conditions.
Collapse
Affiliation(s)
- Sudip Karmakar
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Tushar Kanti Das
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam686560, Kerala, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| |
Collapse
|
6
|
Behera P, Karunakaran S, Sahoo J, Bhatt P, Rana S, De M. Ligand Exchange on MoS 2 Nanosheets: Applications in Array-Based Sensing and Drug Delivery. ACS NANO 2022; 17:1000-1011. [PMID: 36482513 DOI: 10.1021/acsnano.2c06994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional MoS2 nanosheets (2D-MoS2) have been widely used in many biological applications due to their distinctive physicochemical properties. Further, the development of surface modification using thiolated ligands allows us to use them for many specific applications. But the effect of possible ligand exchange on 2D-MoS2 has never been explored, which can play an important role in diverse biological applications. In this study, we have observed the ligand-exchange phenomenon on 2D-MoS2 in the presence of different thiolated ligands. The initial study proceeded with boron-dipyrromethene (BODIPY) functionalized MoS2 with different concentrations of glutathione (GSH), which is the most abundant thiol species in the cytoplasm of various cancer cells. It was found that in the presence of GSH the fluorescence of BODIPY can be regenerated, which is time and concentration dependent. We have also examined this phenomenon with different thiol ligands and transition-metal dichalcogenides (TMDs). We observed a variable rate of ligand exchange in different solvents, surface functionality, and receptor environments that helped us to construct sensor arrays. Interestingly, a ligand-exchange process was not observed in the presence of dithiols. Further, this concept was applied to a cancerous cell line for in vitro delivery. We found that BODIPY-functionalized 2D-MoS2 undergoes thiol exchange by intracellular GSH and subsequently enhanced the fluorescence in the cytoplasm of cancer cells. This strategy can be applied to the development of 2D-TMD-based materials for various biological applications related to ligand exchange.
Collapse
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subbaraj Karunakaran
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Bonilla CAM, Flórez MHT, Molina Velasco DR, Kouznetsov VV. Surface characterization of thiol ligands on CdTe quantum dots: analysis by 1H NMR and DOSY. NEW J CHEM 2019. [DOI: 10.1039/c8nj05914d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fast and low-cost 1H-NMR/DOSY experiments are a valuable toolbox for CdTe QD complementary characterization, providing valuable information about dynamics and the chemical ligand–core linkage.
Collapse
Affiliation(s)
- Carlos A. Martínez Bonilla
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará
- Piedecuesta
- Colombia
| | | | - Daniel R. Molina Velasco
- Laboratorio de Resonancia Magnética Nuclear, Universidad Industrial de Santander
- Piedecuesta
- Colombia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará
- Piedecuesta
- Colombia
| |
Collapse
|