1
|
Alsufyani MM, Alqarni WM, Alzahrani Y, Balbed AK, Alkathyri MM, Rahman MA. Spontaneous nanoemulsification for solubility enhancement of BCS class II and IV molecules, quercetin as a model drug. MethodsX 2025; 14:103298. [PMID: 40241705 PMCID: PMC12002819 DOI: 10.1016/j.mex.2025.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Spontaneous emulsification represents a practicable and efficient method for the formulation of nanoemulsion utilized in drug delivery systems. This method provides numerous advantages, such as increased energy efficiency optimization, the possibility of scaling up for industrial use, enhanced drug loading capacity, and safeguarding sensitive compounds designated for encapsulation. Nanoemulsion can be produced simply by combining water, oil, surfactant, and co-surfactant in specific ratios. The sequence in which these components are mixed is generally regarded as non-critical, as nanoemulsions form spontaneously. However, despite the spontaneous nature of nanoemulsification, the forces driving this process are minimal, and the time required for these systems to achieve equilibrium can be considerable. The titration method employed for developing the phase diagram, along with the selection of nanoemulsions from the constructed phase diagram, is crucial for researchers. The objective of this study is to understand the feasibility of this method to prepare nanoemulsion using quercetin as model drug. Overall,•This method resulted in development of efficient screening technique for nanoemulsion.•Validation was achieved by measuring droplet size and drug release confirmed the usefulness of the method.•This approach presents a cost-effective method applicable in drug design to enhance its solubility and thus bioavailability.
Collapse
Affiliation(s)
- Marwan Motuq Alsufyani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Waleed Mohammad Alqarni
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Yousef Alzahrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Alaa Khalid Balbed
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Musab Musleh Alkathyri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Mohammed Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
2
|
Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. A novel reverse micelle based cationic double nanoemulsion as a potential nanoplatform for enhancing the anitglucomal activity of betaxolol hydrochloride; formulation, in vitro characterization, ex vivo permeation and in vivo pharmacodynamic evaluation in glaucomatous rabbits’ eyes. J Drug Deliv Sci Technol 2023; 90:105112. [DOI: 10.1016/j.jddst.2023.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
|
3
|
Advances and trends in encapsulation of essential oils. Int J Pharm 2023; 635:122668. [PMID: 36754179 DOI: 10.1016/j.ijpharm.2023.122668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
There is a huge concern regarding the potential carcinogenic and mutagenic risks associated with the usage of synthetic chemicals as preservatives in various consumer products such as food and pharmaceutical formulations. In this aspect, there is a need for the development of alternative natural preservatives to replace these synthetic chemicals. More recently, naturally occurring essential oils have emerged as popular ingredients owing to their unique characteristics like antioxidant and antimicrobial activity, to enrich and enhance the functional properties of consumer products. However, due to their high volatility and hydrophobicity, their functionality is lost and their incorporation in aqueous products is challenging. One of the promising strategies to overcome this challenge is encapsulation which involves the entrapment of the essential oil inside a biocompatible material for its controlled release and increased bioavailability. Also, the choice of encapsulation method depends on the component to be encapsulated and the shell material. In this review, encapsulation in various colloidal systems that facilitate the potential delivery of essential oils is discussed. The focus is on encapsulation techniques along with their advantages and disadvantages, encapsulation efficiency, and in vitro release studies.
Collapse
|
4
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
5
|
Sugiyama T, Minami M, Uchimura T. Using Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry to Evaluate the Movement of a Constituent in a Multiple Emulsion. ACS OMEGA 2022; 7:2099-2104. [PMID: 35071898 PMCID: PMC8772314 DOI: 10.1021/acsomega.1c05599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Herein, we propose a method for evaluating the movement of a constituent in a multiple emulsion while maintaining its original dispersed condition. In this study, an oil-in-water-in-oil (O1/W/O2) emulsion was prepared using a two-step emulsification method with styrene as an analyte species in the inner phase (O1). The emulsion was measured using resonance-enhanced multiphoton ionization time-of-flight mass spectrometry without pretreatment such as centrifugation. From a series of obtained mass spectra, a time profile for the peak areas arising from styrene was constructed. When the emulsion was measured immediately following preparation, a time profile composed of a base, positive, and negative signals confirmed the presence of styrene in the O2, O1, and W phases, respectively. Moreover, while a small amount of styrene was present in the inner O1 phase, almost all of the styrene was found in the outer O2 phase. Furthermore, the results of the obtained time profile were converted into a box plot, and a method for the selection of the base, positive, and negative signals was tentatively determined. Then, the movement of styrene among the phases could be evaluated using the time courses of these signals; the time constant of the movement of styrene from an O1/W droplet to the O2 phase was calculated to be 0.8 h.
Collapse
Affiliation(s)
- Tomonobu Sugiyama
- Department
of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Minori Minami
- Department
of Materials Science and Biotechnology, School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Tomohiro Uchimura
- Department
of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
6
|
Fan P, Ma Z, Partow AJ, Kim M, Shoemaker GM, Tan R, Tong Z, Nelson CD, Jang Y, Jeong KC. A novel combination therapy for multidrug resistant pathogens using chitosan nanoparticles loaded with β-lactam antibiotics and β-lactamase inhibitors. Int J Biol Macromol 2022; 195:506-514. [PMID: 34920071 DOI: 10.1016/j.ijbiomac.2021.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance is one of the greatest global threats. Particularly, multidrug resistant extended-spectrum β-lactamase (ESBL)-producing pathogens confer resistance to many commonly used medically important antibiotics, especially beta-lactam antibiotics. Here, we developed an innovative combination approach to therapy for multidrug resistant pathogens by encapsulating cephalosporin antibiotics and β-lactamase inhibitors with chitosan nanoparticles (CNAIs). The four combinations of CNAIs including two cephalosporin antibiotics (cefotaxime and ceftiofur) with two β-lactamase inhibitors (tazobactam and clavulanate) were engineered as water-oil-water emulsions. Four combinations of CNAIs showed efficient antimicrobial activity against multidrug resistant ESBL-producing Enterobacteriaceae. The CNAIs showed enhanced antimicrobial activity compared to naïve chitosan nanoparticles and to the combination of cephalosporin antibiotics and β-lactamase inhibitors. Furthermore, CNAIs attached on the bacterial surface changed the permeability to the outer membrane, resulting in cell damage that leads to cell death. Taken together, CNAIs have provided promising potential for treatment of diseases caused by critically important ESBL-producing multidrug resistant pathogens.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhengxin Ma
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Arianna J Partow
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Grace M Shoemaker
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ruwen Tan
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Akram S, Anton N, Omran Z, Vandamme T. Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics 2021; 13:1030. [PMID: 34371723 PMCID: PMC8309089 DOI: 10.3390/pharmaceutics13071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nano-emulsions consist of stable suspensions of nano-scaled droplets that have huge loading capacities and are formulated with safe compounds. For these reasons, a large number of studies have described the potential uses of nano-emulsions, focusing on various aspects such as formulation processes, loading capabilities, and surface modifications. These studies typically concern direct nano-emulsions (i.e., oil-in-water), whereas studies on reverse nano-emulsions (i.e., water-in-oil) remain anecdotal. However, reverse nano-emulsion technology is very promising (e.g., as an alternative to liposome technology) for the development of drug delivery systems that encapsulate hydrophilic compounds within double droplets. The spontaneous emulsification process has the added advantages of optimization of the energetic yield, potential for industrial scale-up, improved loading capabilities, and preservation of fragile compounds targeted for encapsulation. In this study, we propose a detailed investigation of the processes and formulation parameters involved in the spontaneous nano-emulsification that produces water-in-oil nano-emulsions. The following details were addressed: (i) the order of mixing of the different compounds (method A and method B), (ii) mixing rates, (iii) amount of surfactants, (iv) type and mixture of surfactants, (v) amount of dispersed phase, and (vi) influence of the nature of the oil. The results emphasized the effects of the formulation parameters (e.g., the volume fraction of the dispersed phase, nature or concentration of surfactant, or nature of the oil) on the nature and properties of the nano-emulsions formed.
Collapse
Affiliation(s)
- Salman Akram
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
| | - Nicolas Anton
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Ziad Omran
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Thierry Vandamme
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
8
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
9
|
Chen XW, Ning XY, Yang XQ. Fabrication of Novel Hierarchical Multicompartment Highly Stable Triple Emulsions for the Segregation and Protection of Multiple Cargos by Spatial Co-encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10904-10912. [PMID: 31508953 DOI: 10.1021/acs.jafc.9b03509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-order multiple emulsions are of great interest in both fundamental research and industrial applications as vehicles for their encapsulation capability of actives. In this work, we report a hierarchically multicompartmental highly stable triple emulsion by emulsifying and assembling of natural Quillaja saponin. Water-in-oil-in-(oil-in-water) (W2/O2/(O1/W1)) triple emulsion indicates that the compartmented system consisted of surfaced saponin-coated nanodroplets (SNDs) and dispersed oil globules, which in turn contained smaller aqueous droplets. The effects of formulation parameters, including lipophilic emulsifier content, oil fraction, and SND concentration, on the formation of multiple emulsions were systematically investigated. The assembly into fibrillar network of SNDs at the outer oil-water interface effectively protected the triple emulsion droplets against flocculation and coalescence, and strongly prevented the osmotic-driven water diffusion between the internal water droplets and the external water phase, thus contributing to superior stability during 180 days storage. All of these characteristics make the multicompartmentalized emulsions suitable to co-encapsulate a hydrophilic bioactive (gardenia blue) and two hydrophobic bioactives (eapsanthin and curcumin) in a single emulsion droplet hierarchically for the segregation and protection of multiple cargos. This approach offers a promising route toward accessing the next generation of functional deliveries and encapsulation strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Lianhua Road 100 , Zhengzhou 450001 , Henan Province , P. R. China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Laboratory of Food Proteins and Colloids, Department of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xue-Ying Ning
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Lianhua Road 100 , Zhengzhou 450001 , Henan Province , P. R. China
| | - Xiao-Quan Yang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Laboratory of Food Proteins and Colloids, Department of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|