1
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
2
|
Tabata K, Nohara T, Nakazaki H, Makino T, Saito T, Arita T, Masuhara A. Proton conductivity dependence on the surface polymer thickness of core-shell type nanoparticles in a proton exchange membrane. NANOSCALE ADVANCES 2022; 4:4714-4723. [PMID: 36381507 PMCID: PMC9642339 DOI: 10.1039/d2na00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The proton exchange membrane (PEM) is the main component that determines the performance of polymer electrolyte fuel cells. The construction of proton-conduction channels capable of fast proton conduction is an important topic in PEM research. In this study, we have developed poly(vinylphosphonic acid)-block-polystyrene (PVPA-b-PS)-coated core-shell type silica nanoparticles prepared by in situ polymerization and a core-shell type nanoparticle-filled PEM. In this system, two-dimensional (2D) proton-conduction channels have been constructed between PVPA and the surface of silica nanoparticles, and three-dimensional proton-conduction channels were constructed by connecting these 2D channels by filling with the core-shell type nanoparticles. The proton conductivities and activation energies of pelletized PVPA-coated core-shell type nanoparticles increased depending on the coated PVPA thickness. Additionally, pelletized PVPA-b-PS-coated silica nanoparticles showed a good proton conductivity of 1.3 × 10-2 S cm-1 at 80 °C and 95% RH. Also, the membrane state achieved 1.8 × 10-4 S cm-1 in a similar temperature and humidity environment. Although these proton conductivities were lower than those of PVPA, they have advantages such as low activation energy for proton conduction, suppression of swelling due to water absorption, and the ability to handle samples in powder form. Moreover, by using PS simultaneously, we succeeded in improving the stability of proton conductivity against changes in the temperature and humidity environment. Therefore, we have demonstrated a highly durable, tough but still enough high proton conductive material by polymer coating onto the surface of nanoparticles and also succeeded in constructing proton-conduction channels through the easy integration of core-shell type nanoparticles.
Collapse
Affiliation(s)
- Keisuke Tabata
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Tomohiro Nohara
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Haruki Nakazaki
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Tsutomu Makino
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Takaaki Saito
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Toshihiko Arita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM), Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
3
|
Nohara T, Arita T, Tabata K, Saito T, Shimada R, Nakazaki H, Suzuki Y, Sato R, Masuhara A. Novel Filler-Filled-Type Polymer Electrolyte Membrane for PEFC Employing Poly(vinylphosphonic acid)- b-polystyrene-Coated Cellulose Nanocrystals as a Filler. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8353-8360. [PMID: 35067039 DOI: 10.1021/acsami.1c18695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-acidity polymer electrolyte membranes are essential to polymer electrolyte fuel cells (PEFCs) and water electrolysis systems, both of which are expected to be next-generation energy and hydrogen sources. We developed a new type of high-performance polymer electrolyte membrane (PEM) in which the core particles are precisely electrolyte polymer coated and filled into binder resin. Cellulose nanocrystals (CNCs), which have attracted attention as light, rigid, and sustainable materials, were selected as the core material for the filler. The CNC surface was coated with a new block copolymer containing a proton conductive polymer of poly(vinylphosphonic acid) (PVPA) and a hydrophobic polymer of polystyrene (PS) using RAFT polymerization with particles (PwP) we developed. The pelletized fillers and the filler-filled polycarbonate membranes achieved proton conductivities of over 10-2 S/cm with lower activation energies and much weaker acidity than the Nafion membrane.
Collapse
Affiliation(s)
- Tomohiro Nohara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Toshihiko Arita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Keisuke Tabata
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Takaaki Saito
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Ryuichiro Shimada
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Haruki Nakazaki
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Yukina Suzuki
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Ryota Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
SUWANSOONTORN A, YAMAMOTO K, NAGANO S, MATSUI J, NAGAO Y. Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Katsuhiro YAMAMOTO
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology
| | - Shusaku NAGANO
- Department of Chemistry, College of Science, Rikkyo University
| | | | - Yuki NAGAO
- School of Materials Science, Japan Advanced Institute of Science and Technology
| |
Collapse
|
5
|
Niinuma A, Tsukamoto M, Matsui J. Self-Assembled Lamellar Films of Comb-Shaped Copolymers by Segregation between Hydrophobic Side Chains and the Main Chain with Hydrophilic Comonomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5393-5398. [PMID: 33885305 DOI: 10.1021/acs.langmuir.1c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled lamellar films of poly(N-dodecyl acrylamide-stat-vinyl phosphonic acid) [p(DDA/VPA)] were formed via the segregation between the hydrophilic main chain and VPA and dodecyl side chains. p(DDA/VPA) copolymers were synthesized by free-radical copolymerization of DDA and VPA with VPA molar concentrations of 19% [p(DDA/VPA19)] and 64% [p(DDA/VPA64)]. Both copolymers exhibited a glass-transition temperature (Tg) and melting temperature for p(DDA/VPA19), but no crystalline or liquid-crystalline phase-transition temperatures, which suggests that both copolymers are amorphous. Thin films of the copolymers were prepared by spin coating, and the structure of the films was studied by X-ray diffraction (XRD) measurements. The as-cast films of the copolymers showed broad diffraction patterns, which suggested the formation of alkyl nanodomains similar to that observed in the pDDA homopolymers. On the other hand, the XRD patterns for both copolymer films showed a sharp Bragg diffraction in the low-q region after annealing at 60 °C. Furthermore, the p(DDA/VPA19) film showed first- and second-order Bragg diffractions with a ratio of 1:2. These XRD patterns suggest that the copolymer films form an ordered lamellar structure. We concluded that the main chain became more hydrophilic by the introduction of VPA, resulting in an increased segregation force relative to the hydrophobic dodecyl side chains, which induces the formation of lamellae. Moreover, doping a p(DDA/VPA64) film with imidazole increased the ordering and uniformity of the lamellar structures due to the increased segregation force by the formation of ion pairs in the hydrophilic comonomer. In their entirety, the results show that statistical copolymerization can be used as a new method to create self-assembled structures.
Collapse
|
6
|
Nicks J, Boer SA, White NG, Foster JA. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem Sci 2021; 12:3322-3327. [PMID: 34164102 PMCID: PMC8179369 DOI: 10.1039/d0sc06906j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials.
Collapse
Affiliation(s)
- Joshua Nicks
- Department of Chemistry, University of Sheffield Sheffield UK
| | - Stephanie A Boer
- Research School of Chemistry, The Australian National University Canberra ACT 2600 Australia
| | - Nicholas G White
- Research School of Chemistry, The Australian National University Canberra ACT 2600 Australia
| | | |
Collapse
|
7
|
Timmerman MA, Xia R, Le PTP, Wang Y, ten Elshof JE. Metal Oxide Nanosheets as 2D Building Blocks for the Design of Novel Materials. Chemistry 2020; 26:9084-9098. [PMID: 32077166 PMCID: PMC7496187 DOI: 10.1002/chem.201905735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Indexed: 01/08/2023]
Abstract
Research into 2-dimensional materials has soared during the last couple of years. Next to van der Waals type 2D materials such as graphene and h-BN, less well-known oxidic 2D equivalents also exist. Most 2D oxide nanosheets are derived from layered metal oxide phases, although few 2D oxide phases can be also made by bottom-up solution syntheses. Owing to the strong electrostatic interactions within layered metal oxide crystals, a chemical process is usually needed to delaminate them into their 2D constituents. This Review article provides an overview of the synthesis of oxide nanosheets, and methods to assemble them into nanocomposites, mono- or multilayer films. In particular, the use of Langmuir-Blodgett methods to form monolayer films over large surface areas, and the emerging use of ink jet printing to form patterned functional films is emphasized. The utilization of nanosheets in various areas of technology, for example, electronics, energy storage and tribology, is illustrated, with special focus on their use as seed layers for epitaxial growth of thin films, and as electrochemically active electrodes for supercapacitors and Li ion batteries.
Collapse
Affiliation(s)
- Melvin A. Timmerman
- MESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500AEEnschedeThe Netherlands
| | - Rui Xia
- MESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500AEEnschedeThe Netherlands
| | - Phu T. P. Le
- MESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500AEEnschedeThe Netherlands
| | - Yang Wang
- MESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500AEEnschedeThe Netherlands
| | - Johan E. ten Elshof
- MESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 2177500AEEnschedeThe Netherlands
| |
Collapse
|
8
|
Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:79-91. [PMID: 32158509 PMCID: PMC7033726 DOI: 10.1080/14686996.2020.1722740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|