1
|
Petris PC, Teverovskiy G, Ross R, Sweere AJM, Handgraaf JW. Coarse-Grained Modeling of the Water/Alkane Wetting and Dewetting Processes on Fluorinated Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39566037 DOI: 10.1021/acs.langmuir.4c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This work provides a framework to digitally assess any droplet's static and dynamic contact angles on coatings and polymeric substrates. We are introducing a new dissipative particle dynamics coarse-grained model to attain the spatiotemporal conditions and the coexistence of different phases that such investigation dictates. Two computational techniques are additionally developed; a robust technique to calculate the static contact angle using density profiles and a perturbation method to evaluate dynamic contact angles. A parallel force to the surface force is applied to emulate the receding and advancing dynamics. We have validated our protocols for the static contact angle of water for a series of polymeric surfaces and the dynamic contact angle for three different fluorinated additives. We reproduced the correct hysteresis trends between the droplet content and the surface. The fluorinated nature of the additive's tails is the driving force of directed self-assembly and, consequently, the repelling nature of the surface. An equally important factor for designating the interaction profile of the surface is the coating's chemical structure, which is responsible for inhibiting or favoring the aqueous media interaction.
Collapse
Affiliation(s)
| | | | - Richard Ross
- 3M Company, Saint Paul, Minnesota 55144, United States
| | | | | |
Collapse
|
2
|
Liu J, Cao H. Sub-ambient water wettability of hydrophilic and hydrophobic SiO2 surfaces. J Chem Phys 2024; 161:184701. [PMID: 39513444 DOI: 10.1063/5.0236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The wettability of SiO2 surfaces, crucial for understanding the phase transition processes of water, remains a topic of significant controversy in the literature due to uncertainties in experiments. Molecular dynamics (MD) simulations offer a promising avenue for elucidating these complexities, yet studies specifically addressing water contact angles on hydrophilic and hydrophobic SiO2 surfaces at sub-ambient temperatures are notably absent. In this study, we experimentally measured water contact angles of hydrophilic and hydrophobic SiO2 surfaces at ambient temperature and employed MD to investigate water contact angles on Q3, Q3/Q4, and Q4 SiO2 surfaces across temperatures ranging from 220 to 300 K. We investigated the effects of the distribution of hydroxyl groups, droplet size, and hydroxyl density and found that the hydroxyl density had the largest impact on contact angle. Moreover, hydrogen bond analysis uncovered enhanced water affinities of Q3 and Q3/Q4 SiO2 surfaces at lower temperatures, and the spreading rate of precursor films reduced with decreasing temperature. This comprehensive study sheds light on the intricate interaction between surface properties and water behavior, promoting our understanding of the wettability of SiO2 surfaces.
Collapse
Affiliation(s)
- Jianghui Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
3
|
Prado Camargo A, Jusufi A, Lee AG, Koplik J, Morris JF, Giovambattista N. Water and Carbon Dioxide Capillary Bridges in Nanoscale Slit Pores: Effects of Temperature, Pressure, and Salt Concentration on the Water Contact Angle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18439-18450. [PMID: 39158401 PMCID: PMC11375785 DOI: 10.1021/acs.langmuir.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We perform molecular dynamics (MD) simulations of a nanoscale water capillary bridge (WCB) surrounded by carbon dioxide over a wide range of temperatures and pressures (T = 280-400 K and carbon dioxide pressures P CO 2 ≈ 0-80 MPa). The water-carbon dioxide system is confined by two parallel silica-based surfaces (hydroxylated β-cristobalite) separated by h = 5 nm. The aim of this work is to study the WCB contact angle (θc) as a function of T and P CO 2 . Our simulations indicate that θc varies weakly with temperature and pressure: Δθc ≈ 10-20° for P CO 2 increasing from ≈0 to 80 MPa (T = 320 K); Δθc ≈ -10° for T increasing from 320 to 360 K (with a fixed amount of carbon dioxide). Interestingly, at all conditions studied, a thin film of water (1-2 water layers-thick) forms under the carbon dioxide volume. Our MD simulations suggest that this is due to the enhanced ability of water, relative to carbon dioxide, to form hydrogen-bonds with the walls. We also study the effects of adding salt (NaCl) to the WCB and corresponding θc. It is found that at the salt concentrations studied (mole fractions xNa = xCl = 3.50, 9.81%), the NaCl forms a large crystallite within the WCB with the ions avoiding the water-carbon dioxide interface and the walls surface. This results in θc being insensitive to the presence of NaCl.
Collapse
Affiliation(s)
| | - Arben Jusufi
- ExxonMobil Technology and Engineering Company, 1545 US Rt. 22 East, Annandale, New Jersey 08801, United States
| | - Alex Gk Lee
- ExxonMobil Technology and Engineering Company, 1545 US Rt. 22 East, Annandale, New Jersey 08801, United States
| | - Joel Koplik
- Levich Institute, City College of New York, New York, New York 10031, United States
- Department of Physics, City College of New York, New York, New York 10031, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Jeffrey F Morris
- Levich Institute, City College of New York, New York, New York 10031, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemical Engineering, City College of New York, New York, New York 10031, United States
| | - Nicolas Giovambattista
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| |
Collapse
|
4
|
Yang Y, Narayanan Nair AK, Lau D, Sun S. Interfacial properties of the brine + carbon dioxide + oil + silica system. J Chem Phys 2024; 160:114702. [PMID: 38497476 DOI: 10.1063/5.0197087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Molecular dynamics simulations of the H2O + CO2 + aromatic hydrocarbon and H2O + CO2 + benzene + silica (hydrophilic) systems are performed to gain insights into CO2-enhanced oil recovery (EOR) processes. For comparison purposes, an overview of the previous simulation studies of the interfacial properties of the brine + CO2 + alkane + silica system is also presented. In general, the water contact angle (CA) of the H2O + CO2 + silica (hydrophilic) system increased with pressure and decreased with temperature. The CAs of the H2O + hydrocarbon + silica (hydrophilic) system are not significantly affected by temperature and pressure. The simulated CAs were in the ranges of about 58°-77° and 81°-93° for the H2O + hexane + silica (hydrophilic) and the H2O + aromatic hydrocarbon + silica (hydrophilic) systems, respectively. In general, these CAs were not significantly influenced by the addition of CO2. The simulated CAs were in the ranges of about 51.4°-95.0°, 69.1°-86.0°, and 72.0°-87.9° for the brine + CO2 + silica (hydrophilic), brine + hexane + silica (hydrophilic), and brine + CO2 + hexane + silica (hydrophilic) systems, respectively. All these CAs increased with increasing NaCl concentration. The adhesion tension of the brine + silica (hydrophilic) system in the presence of CO2 and/or hexane decreased with increasing salt concentration. The simulated CAs were in the range of about 117°-139° for the H2O + alkane + silica (hydrophobic) system. These CAs are increased by the addition of CO2. At high pressures, the distributions of H2O normal to the silica (hydrophobic) surface in the droplet region of the H2O + silica system were found to be strongly affected by the presence of CO2. These insights might be key for optimizing the performance of the miscible CO2 water-alternating-gas injection schemes widely used for EOR.
Collapse
Affiliation(s)
- Yafan Yang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Jiang W, Lv W, Jia N, Lu X, Wang L, Wang K, Mei Y. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations. Molecules 2024; 29:1112. [PMID: 38474624 DOI: 10.3390/molecules29051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Shut-in after fracturing is generally adopted for wells in shale oil reservoirs, and imbibition occurring in matrix nanopores has been proven as an effective way to improve recovery. In this research, a molecular dynamics (MD) simulation was used to investigate the effects of wettability and pressure on nanopore imbibition during shut-in for a typical shale reservoir, Jimsar. The results indicate that the microscopic advancement mechanism of the imbibition front is the competitive adsorption between "interfacial water molecules" at the imbibition front and "adsorbed oil molecules" on the pore wall. The essence of spontaneous imbibition involves the adsorption and aggregation of water molecules onto the hydroxyl groups on the pore wall. The flow characteristics of shale oil suggest that the overall push of the injected water to the oil phase is the main reason for the displacement of adsorbed oil molecules. Thus, shale oil, especially the heavy hydrocarbon component in the adsorbed layer, tends to slip on the walls. However, the weak slip ability of heavy components on the wall surface is an important reason that restricts the displacement efficiency of shale oil during spontaneous imbibition. The effectiveness of spontaneous imbibition is strongly dependent on the hydrophilicity of the matrix pore's wall. The better hydrophilicity of the matrix pore wall facilitates higher levels of adsorption and accumulation of water molecules on the pore wall and requires less time for "interfacial water molecules" to compete with adsorbed oil molecules. During the forced imbibition process, the pressure difference acts on both the bulk oil and the boundary adsorption oil, but mainly on the bulk oil, which leads to the occurrence of wetting hysteresis. Meanwhile, shale oil still existing in the pore always maintains a good, stratified adsorption structure. Because of the wetting hysteresis phenomenon, as the pressure difference increases, the imbibition effect gradually increases, but the actual capillary pressure gradually decreases and there is a loss in the imbibition velocity relative to the theoretical value. Simultaneously, the decline in hydrophilicity further weakens the synergistic effect on the imbibition of the pressure difference because of the more pronounced wetting hysteresis. Thus, selecting an appropriate well pressure enables cost savings and maximizes the utilization of the formation's natural power for enhanced oil recovery (EOR).
Collapse
Affiliation(s)
- Wen Jiang
- College of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
| | - Weifeng Lv
- Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
- State Key Laboratory of Enhanced Oil and Gas Recovery, Beijing 100083, China
| | - Ninghong Jia
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
- State Key Laboratory of Enhanced Oil and Gas Recovery, Beijing 100083, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
| | - Lu Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
| | - Kai Wang
- College of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
| | - Yuhao Mei
- College of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang 065007, China
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
| |
Collapse
|
6
|
Yin Y, Zheng W, Lin S, Zhao L. Dissolution of Forsterite Surface in Brine at CO 2 Geo-storage Conditions: Insights from Molecular Dynamic Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4304-4316. [PMID: 36919919 DOI: 10.1021/acs.langmuir.2c03309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Evaluating the long-term security of geological deep saline aquifers to store CO2 requires a comprehensive understanding of mineral dissolution properties. Molecular dynamics simulations are performed to study the dissolution of forsterite in deep saline aquifers. The forsterite surface is found to be covered by three H2O molecular layers, hindering CO2 from directly contacting the surface. The dissolution rates at 350 K are increased by more than 1012 with the presence of Mg defects or salt ions in solutions. The more disordered surface in pure water caused by Mg defects accounts for the acceleration of dissolution, while absorbed Cl- ions on the surface in NaCl and KCl solutions accelerate the dissolution through electrostatic interactions. Comparatively, the frequent attacks from alkaline earth cations in MgCl2 and CaCl2 solutions to the surface contribute to the enhanced dissolution. In the acidic H3OCl solution, the electrostatic interactions between O atoms in H3O+ and the surface facilitate the dissolution. Interestingly, the ionic clusters of CO32-/HCO3- and Na+ in Na2CO3/NaHCO3 solution promote the dissolution process. This work provides molecular insights into forsterite dissolution in deep saline aquifers and guidance toward the optimization of CO2 geo-storage conditions.
Collapse
Affiliation(s)
- Yuming Yin
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenhui Zheng
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Zhao
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
7
|
Yang Y, Che Ruslan MFA, Narayanan Nair AK, Qiao R, Sun S. Interfacial properties of the hexane + carbon dioxide + water system in the presence of hydrophilic silica. J Chem Phys 2022; 157:234704. [PMID: 36550045 DOI: 10.1063/5.0130986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular dynamics simulations were conducted to study the interfacial behavior of the CO2 + H2O and hexane + CO2 + H2O systems in the presence of hydrophilic silica at geological conditions. Simulation results for the CO2 + H2O and hexane + CO2 + H2O systems are in reasonable agreement with the theoretical predictions based on the density functional theory. In general, the interfacial tension (IFT) of the CO2 + H2O system exponentially (linearly) decreased with increasing pressure (temperature). The IFTs of the hexane + CO2 + H2O (two-phase) system decreased with the increasing mole fraction of CO2 in the hexane/CO2-rich phase xCO2 . Here, the negative surface excesses of hexane lead to a general increase in the IFTs with increasing pressure. The effect of pressure on these IFTs decreased with increasing xCO2 due to the positive surface excesses of carbon dioxide. The simulated water contact angles of the CO2 + H2O + silica system fall in the range from 43.8° to 76.0°, which is in reasonable agreement with the experimental results. These contact angles increased with pressure and decreased with temperature. Here, the adhesion tensions are influenced by the variations in fluid-fluid IFT and contact angle. The simulated water contact angles of the hexane + H2O + silica system fall in the range from 58.0° to 77.0° and are not much affected by the addition of CO2. These contact angles increased with pressure, and the pressure effect was less pronounced at lower temperatures. Here, the adhesion tensions are mostly influenced by variations in the fluid-fluid IFTs. In all studied cases, CO2 molecules could penetrate into the interfacial region between the water droplet and the silica surface.
Collapse
Affiliation(s)
- Yafan Yang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Wei-Hsin Sun E, Bourg IC. Impact of organic solutes on capillary phenomena in water-CO2-quartz systems. J Colloid Interface Sci 2022; 629:265-275. [DOI: 10.1016/j.jcis.2022.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
9
|
Sun C, Zhou R, Zhao Z, Bai B. Unveiling the hydroxyl-dependent viscosity of water in graphene oxide nanochannels via molecular dynamics simulations. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Wang H, Su Y, Wang W. Investigations on Water Imbibing into Oil-Saturated Nanoporous Media: Coupling Molecular Interactions, the Dynamic Contact Angle, and the Entrance Effect. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Han Wang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuliang Su
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Wendong Wang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|