1
|
Ahmad NA, Goh PS, Zakaria NAS, Naim R, Abdullah MS, Ismail AF, Hashim N, Kerisnan Kerishnan ND, Yahaya NKEM, Mohamed A. The role of sheet-like TiO 2 in polyamide reverse osmosis membrane for enhanced removal of endocrine disrupting chemicals. CHEMOSPHERE 2024; 353:141108. [PMID: 38423147 DOI: 10.1016/j.chemosphere.2024.141108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 01/01/2024] [Indexed: 03/02/2024]
Abstract
Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.
Collapse
Affiliation(s)
- Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Nur Alyaa Syfina Zakaria
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Rosmawati Naim
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nirmala Devi Kerisnan Kerishnan
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory of Putrajaya, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Alias Mohamed
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory of Putrajaya, Malaysia
| |
Collapse
|
2
|
Akintola J, Abou Shaheen S, Wu Q, Schlenoff JB. Relative Strength of Polycation Adsorption on Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38316024 DOI: 10.1021/acs.langmuir.3c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Polyelectrolyte adsorption onto surfaces is widely employed in water treatment and mining. However, little is known of the relative interaction strengths between surfaces and polymer. This fundamental property is assumed to be dominated by electrostatics, i.e., attractive interactions between opposite charges, which are set by the overall ionic strength ("salt concentration") of the solution, and charge densities of the surface and the polymer. A common, counterintuitive finding is a range of salt concentrations over which the amount of adsorbed polyelectrolyte increases as electrostatic interactions are tempered by the addition of salt. After an adsorption maximum, higher salt concentrations then produce the expected gradual desorption of polyelectrolyte. In this work, the salt response of the adsorption of the same narrow molecular weight distribution polycation, poly(N-methyl-4-vinylpyridinium), PM4VP, to a variety of surfaces was explored. Oxide powders for adsorption included Al2O3, SiO2, Fe2O3, Fe3O4, TiO2, ZnO, and CuO. Planar surfaces included silicon wafers, mica, calcium carbonate, and CaF2 single crystals. The PM4VP was radiolabeled with 14C so that sensitive, submonolayer amounts could be detected. The position of the peak maximum, or the lack of a peak, in response to added salt was used to rank the electrostatic component of the interaction. The importance of charge regulation, a shift in the surface pKa in response to solution species, was highlighted as a mechanism for adsorption on the "wrong" side of the isoelectric point and also as a factor contributing to the difficulty of reaching the totally desorbed state even at the highest salt concentrations.
Collapse
Affiliation(s)
- John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Qiang Wu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310-6046, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
3
|
Water-Mediated attraction between Like-charged species involved in calcium phosphate nucleation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Godek E, Grządka E, Maciołek U. Influence of polysaccharides with different chemical character on stability of montmorillonite suspensions in the presence of pseudoamphoteric cocamidopropyl betaine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Katana B, Varga G, May NV, Szilagyi I. Superoxide dismutase mimicking nanocomposites based on immobilization of metal complexes on nanotubular carriers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Sun M, Zhou H, Xiong H, Zhang R, Liu Z, Li D, Gao B, Qiao ZA. Acid-regulated hydrolysis and condensation of titanium cation toward controllable synthesis of multiphase mesoporous TiO2 for effectively enhance photocatalytic H2 evolution. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Effect of octadecylamine polyoxyethylene ether on the adsorption feature of sodium polystyrene sulfonate on the SiC surface and the relevant dispersion stability of slurry. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Badetti E, Brunelli A, Basei G, Gallego-Urrea JA, Stoll S, Walch H, Praetorius A, von der Kammer F, Marcomini A. Novel multimethod approach for the determination of the colloidal stability of nanomaterials in complex environmental mixtures using a global stability index: TiO 2 as case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149607. [PMID: 34425449 DOI: 10.1016/j.scitotenv.2021.149607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
A systematic study on the colloidal behavior of uncoated and polyvinylpyrrolidone (PVP) coated TiO2 engineered nanomaterials (ENMs) in simulated aqueous media is herein reported, in which conditions representative for natural waters (pH, presence of divalent electrolytes (i.e. Ca2+/Mg2+ and SO42-), of natural organic matter (NOM) and of suspended particulate matter (SPM)) were systematically varied. The colloidal stability of the different dispersions was investigated by means of Dynamic and Electrophoretic Light Scattering (DLS and ELS) and Centrifugal Separation Analysis (CSA), and a global stability index based on these three techniques was developed. The index allows to quantitatively classify the nano-based dispersions according to their colloidal stability affected by the different parameters studied. This multimethod approach clearly identifies inorganic SPM followed by divalent electrolytes as the main natural components destabilizing TiO2 ENMs upon entering in simulated natural waters, while it highlights a moderate stabilization induced by NOM, depending mainly on pH. Moreover, the PVP coating was found to attenuate the influence of these parameters on the colloidal stability. The obtained results show how the global stability index developed is influenced by the complexity of the system, suggesting the importance of combining the information gathered from all the techniques employed to better elucidate the fate and behavior of ENMs in natural surface waters.
Collapse
Affiliation(s)
- Elena Badetti
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy.
| | - Andrea Brunelli
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Gianpietro Basei
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy; GreenDecision Srl, Via delle industrie 21/8, 30175 Venice, Italy
| | - Julián A Gallego-Urrea
- Department of Marine Sciences, Kristineberg Marine Research Station, University of Gothenburg, Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden.
| | - Serge Stoll
- Group of Environmental Physical Chemistry, Department F.-A. Forel for Environmental and Aquatic Sciences, Institute of Environmental Science, University of Geneva, Uni Carl Vogt, 66 boulevard Carl-Vogt, Geneva CH-1211, Switzerland
| | - Helene Walch
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr, 14, UZA II, 1090 Vienna, Austria
| | - Antonia Praetorius
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Frank von der Kammer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr, 14, UZA II, 1090 Vienna, Austria
| | - Antonio Marcomini
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
9
|
Grządka E, Matusiak J, Godek E, Maciołek U. Mixtures of cationic guar gum and anionic surfactants as stabilizers of zirconia suspensions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sáringer S, Valtner T, Varga Á, Maléth J, Szilágyi I. Development of polymer-based multifunctional composite particles of protease and peroxidase activities. J Mater Chem B 2021; 10:2523-2533. [PMID: 34757359 DOI: 10.1039/d1tb01861b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hybrid material (SL-PPN-HEP-HRP) of dual enzyme function was prepared by co-immobilization of papain (PPN) and horseradish peroxidase (HRP) on sulphate latex (SL) microspheres using heparin (HEP) polyelectrolyte as a building block in the sequential adsorption method. The doses of PPN, HEP and HRP were optimized in each step of the preparation process to achieve high functional and colloidal stability. The enzymes and the polyelectrolyte strongly adsorbed on the oppositely charged surfaces via electrostatic forces, and enzyme leakage was not observed from the hybrid material, as confirmed by colorimetric protein tests and microscopy measurements. It was found that the polyelectrolyte acted as a separator between PPN and HRP to prevent hydrolytic attack on the latter enzyme, which otherwise prevents the joint use of these important biocatalysts. Excellent colloidal stability was obtained for the SL-PPN-HEP-HRP composite and the embedded PPN and HRP showed remarkable protease and peroxidase activities, respectively, at least until five days after preparation. The present results offer a promising approach to develop biocatalytic systems of dual function, which are often required in manufacturing processes in the food industry, where the colloidal stability of such multifunctional materials is a key parameter to achieve remarkable efficiency.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Tamás Valtner
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Árpád Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
11
|
Alsharif NB, Bere K, Sáringer S, Samu GF, Takács D, Hornok V, Szilagyi I. Design of hybrid biocatalysts by controlled heteroaggregation of manganese oxide and sulfate latex particles to combat reactive oxygen species. J Mater Chem B 2021; 9:4929-4940. [PMID: 34105573 DOI: 10.1039/d1tb00505g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The preparation of an antioxidant hybrid material by controlled heteroaggregation of manganese oxide nanoparticles (MnO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads was accomplished. Negatively charged MnO2 NPs were prepared by precipitation and initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte to induce charge reversal allowing decoration of oppositely charged SL surfaces via simple mixing. The PDADMAC-functionalized MnO2 NPs (PMn) aggregated with the SL particles leading to the formation of negatively charged, neutral and positively charged (SPMn) composites. The charge neutralization resulted in rapidly aggregating dispersions, while stable samples were observed once the composites possessed sufficiently high negative and positive charge, below and above the charge neutralization point, respectively. The antioxidant assays revealed that SL served as a suitable substrate and that the PDADMAC functionalization and immobilization of MnO2 NPs did not compromise their catalase (CAT) and superoxide dismutase (SOD)-like activities, which were also maintained within a wide temperature range. The obtained SPMn composite is expected to be an excellent candidate as an antioxidant material for the efficient scavenging of reactive oxygen species at both laboratory and larger scales, even under harsh conditions, where natural antioxidants do not function.
Collapse
Affiliation(s)
- Nizar B Alsharif
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Qiuhui Chang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Vásárhelyi L, Hegedűs T, Sáringer S, Ballai G, Szilágyi I, Kónya Z. Stability of Boron Nitride Nanosphere Dispersions in the Presence of Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5399-5407. [PMID: 33878269 PMCID: PMC8280764 DOI: 10.1021/acs.langmuir.1c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Boron nitride nanospheres (BNNSs) were functionalized with polyelectrolytes. The effect of the polyelectrolyte dose and ionic strength on the charging and aggregation properties was investigated. At appropriate polyelectrolyte doses, charge neutralization occurred, whereas by increasing the dose, charge reversal was observed. The complete coating of the particles was indicated by a plateau in the ζ-potential values, which do not change significantly beyond the dose corresponding to the onset of such a plateau. The dispersions were highly aggregated around the charge neutralization point, while at lower or higher doses, the particles were stable. The salt-induced aggregation experiments revealed that the polyelectrolyte coatings contribute to the colloidal stability of the particles, namely, the critical coagulation concentrations deviated from the one determined for bare BNNSs. The presence of electrostatic and steric interparticle forces induced by the adsorbed polyelectrolyte chains was assumed. The obtained results confirm that the comprehensive investigation of the colloidal stability of BNNS particles is crucial to design stable or unstable dispersions and that polyelectrolytes are suitable agents for both stabilization and destabilization of BNNS dispersions, depending on the purpose of their application.
Collapse
Affiliation(s)
- Lívia Vásárhelyi
- Interdisciplinary
Excellence Center, Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Tímea Hegedűs
- Interdisciplinary
Excellence Center, Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged H-6720, Hungary
| | - Gergő Ballai
- Interdisciplinary
Excellence Center, Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged H-6720, Hungary
| | - Zoltán Kónya
- Interdisciplinary
Excellence Center, Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, Szeged H-6720, Hungary
| |
Collapse
|
14
|
Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. J Colloid Interface Sci 2021; 590:28-37. [DOI: 10.1016/j.jcis.2021.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
|
15
|
Niu Y, Zhang W, Zhai C, Liu J. Effect of poly(diallyldimethylammonium chloride) adsorption on the dispersion features of SiC particles in aqueous media. NEW J CHEM 2021. [DOI: 10.1039/d1nj00062d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dispersion behavior of SiC suspensions was improved by PDADMAC adsorbed on the SiC surface effectively through electrostatic interaction.
Collapse
Affiliation(s)
- Yifan Niu
- Beijing Key Laboratory of Electrochemical Process and Technology for materials
- Beijing University of Chemical Technology
- Beijing 100029
- People's Republic of China
| | - Wenxiao Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for materials
- Beijing University of Chemical Technology
- Beijing 100029
- People's Republic of China
| | - Chaoyang Zhai
- Beijing Key Laboratory of Electrochemical Process and Technology for materials
- Beijing University of Chemical Technology
- Beijing 100029
- People's Republic of China
| | - Jiaxiang Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for materials
- Beijing University of Chemical Technology
- Beijing 100029
- People's Republic of China
| |
Collapse
|
16
|
Sallem F, Villatte L, Geffroy PM, Goglio G, Pagnoux C. Surface modification of titania nanoparticles by catechol derivative molecules: Preparation of concentrated suspensions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Apyari VV, Arkhipova VV, Gorbunova MV, Isachenko AI, Volkov PA, Dmitrienko SG. Application of gold nanoparticles in the methods of optical molecular absorption spectroscopy: main effecting factors. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Results of studies on the analytical capabilities of gold nanoparticles in the methods of optical molecular absorption spectroscopy are reported. Peculiar effects of the nature of nanoparticle stabilizer, its charge, morphology of nanoparticles, form in which they are present in the system (in a colloidal solution or as a part of a nanocomposite with polyurethane foam) upon the determination of organic compounds (thiols, cationic compounds, catecholamines) and inorganic anions are considered. The determination is based on aggregation of nanoparticles or change in the state of their surface and morphology as a result of silver coating, leading to significant spectral and color changes, which can be monitored both by optical molecular absorption spectroscopy and visually. The ways to increase sensitivity and to control selectivity of the analysis using gold nanoparticles and their nanocomposites are outlined.
Collapse
Affiliation(s)
- Vladimir V. Apyari
- Lomonosov Moscow State University , Department of Chemistry , Leninskie gory, 1/3 , 119991 Moscow , Russia
| | - Viktoria V. Arkhipova
- Lomonosov Moscow State University , Department of Chemistry , Leninskie gory, 1/3 , 119991 Moscow , Russia
| | - Maria V. Gorbunova
- Lomonosov Moscow State University , Department of Chemistry , Leninskie gory, 1/3 , 119991 Moscow , Russia
| | - Andrey I. Isachenko
- Lomonosov Moscow State University , Department of Chemistry , Leninskie gory, 1/3 , 119991 Moscow , Russia
| | - Pavel A. Volkov
- Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals of National Research Center “Kurchatov Institute” , Bogorodsky Val, 3 , 107076 Moscow , Russia
| | - Stanislava G. Dmitrienko
- Lomonosov Moscow State University , Department of Chemistry , Leninskie gory, 1/3 , 119991 Moscow , Russia
| |
Collapse
|
18
|
Dryabina SS, Rudenko MS, Shulevich YV, Navrotskii AV, Novakov IA. Specifics of kaolin dispersion flocculation due to a polyelectrolyte complex formation on particle surface. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Critical coagulation concentration (CCC) is a key parameter of particle dispersions, since it provides the threshold limit of electrolyte concentrations, above which the dispersions are destabilized due to rapid particle aggregation. A computational method is proposed to predict CCC values using solely electrophoretic mobility data without the need to measure aggregation rates of the particles. The model relies on the DLVO theory; contributions from repulsive double-layer forces and attractive van der Waals forces are included. Comparison between the calculated and previously reported experimental CCC data for the same particles shows that the method performs well in the presence of mono and multivalent electrolytes provided DLVO interparticle forces are dominant. The method is validated for particles of various compositions, shapes, and sizes.
Collapse
|
20
|
Shrestha S, Wang B, Dutta P. Nanoparticle processing: Understanding and controlling aggregation. Adv Colloid Interface Sci 2020; 279:102162. [PMID: 32334131 DOI: 10.1016/j.cis.2020.102162] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NPs) are commonly defined as particles with size <100 nm and are currently of considerable technological and academic interest, since they are often the starting materials for nanotechnology. Novel properties develop as a bulk material is reduced to nanodimensions and is reflected in new chemistry, physics and biology. With reduction in size, a greater function of the atoms is at the surface, and promote different interaction with its environment, as compared to the bulk material. In addition, the reduction in size alters the electronic structure of the material, resulting in novel quantum effects. Size also influences mobility, primarily controlled by Brownian motion for NPs, and relevant in biological and environmental processes. However, the small size also leads to high surface energy, and NPs tend to aggregate, thereby lowering the surface energy. In all applications, the uncontrolled aggregation of NPs can have negative effects and needs to be avoided. There are however examples of controlled aggregation of NPs which give rise to novel effects. This review article is focused on the NP features that influences aggregation. Common strategies for synthesis of NPs from the gas and liquid phases are discussed with emphasis on aggregation during and after synthesis. The theory involving Van der Waals attractive force and electrical repulsive force as the controlling features of the stability of NPs is discussed, followed by examples of how repulsive and attractive forces can be manipulated experimentally to control NP aggregation. In some applications, NPs prepared by liquid methods need to be isolated for further applications. The process of solvent removal introduces new forces such as capillary forces that promote aggregation, in many cases, irreversibly. Strategies for controlling aggregation upon drying are discussed. There are also many methods for redispersing aggregated NPs, which involve mechanical forces, as well as manipulating capillary forces and surface characteristics. We conclude this review with a discussion of aggregation relevant real-world applications of NPs. This review should be relevant for scientists and technologists interested in NPs, since emphasis has been on the practical aspects of NP-based technology, and especially, strategies relevant to controlling NP aggregation.
Collapse
Affiliation(s)
- Sweta Shrestha
- ZeoVation, 1275 Kinnear Road, Columbus, OH 43212, United States of America
| | - Bo Wang
- ZeoVation, 1275 Kinnear Road, Columbus, OH 43212, United States of America
| | - Prabir Dutta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
21
|
Zhang K, Wang Y, Mao J, Chen B. Effects of biochar nanoparticles on seed germination and seedling growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113409. [PMID: 31672365 DOI: 10.1016/j.envpol.2019.113409] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
As a soil amendment, the prospect of biochar application is excellent. However, environmental risks of biochar need to be investigated for its substantial use. The environmental risks of BNPs need urgent attention because at present little knowledge is available. Therefore, the effects of six types of BNPs on seed germination and growth of rice, tomato and reed seedlings were investigated. The BNPs were collected from biochars derived from two feedstocks (rice straw and wood sawdust) under 300 °C (low-temperature), 500 °C (mid-temperature) and 700 °C (high-temperature). The BNPs collected from high-temperature biochar inhibited seed germination of rice. However, all of the BNPs had a stimulating effect on rice seedling growth that significantly increasing the length of its root and shoot. Furthermore, the BNPs collected from high-temperature biochar and lignin-rich feedstock had an inhibiting effect on reed that dramatically decreased shoot length and biomass. Inhibitory effects of BNPs were caused not only by phenolic compounds on its surface, but also by the blocking effect on epidermal openings resulting in a reduced transfer of nutrients and water. No evidence was found that BNPs would affect the seed gemination and seedling growth of tomato plants. This study indicates that the eco-toxicity of BNPs is a potential environmental risk of biochar. Our findings provide new evidence for the necessity of establishing environmental risk management of biochar.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Yaofeng Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Jiefei Mao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Sáringer S, Akula RA, Szerlauth A, Szilagyi I. Papain Adsorption on Latex Particles: Charging, Aggregation, and Enzymatic Activity. J Phys Chem B 2019; 123:9984-9991. [DOI: 10.1021/acs.jpcb.9b08799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Rita Achieng Akula
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| |
Collapse
|