1
|
Chuiprasert J, Srinives S, Boontanon N, Polprasert C, Ramungul N, Karawek A, Boontanon SK. Ciprofloxacin Electrochemical Sensor Using Copper-Iron Mixed Metal Oxides Nanoparticles/Reduced Graphene Oxide Composite. ACS OMEGA 2024; 9:23172-23183. [PMID: 38863745 PMCID: PMC11166261 DOI: 10.1021/acsomega.3c06705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 06/13/2024]
Abstract
The harmful effects of antibiotic proliferation on the environment and its persistent nature are urgent global problems. Ciprofloxacin (CIP) is a fluoroquinolone-class antibiotic agent used widely to treat pathogen-related diseases in humans and animals. Its excretion into surface water causes antibiotic resistance in microbes, resulting in difficult-to-treat or untreatable infectious diseases. This study developed a simple and efficient electrochemical sensor to detect CIP. Hydrothermal chemistry was utilized to synthesize an electrophotocatalytic composite of copper-iron mixed metal oxides (CIMMO) on reduced graphene oxide (rGO) (CIMMO/rGO). The composite was employed in an electrochemical sensor and exhibited outstanding performance in detecting CIP. The sensor was operated in differential pulse voltammetry (DPV) mode under light source illumination. The sensor yielded a linear response in the concentration range of 0.75 × 10-9-1.0 × 10-7 mol L-1 CIP and showed a limit of detection (LOD) of 4.74 × 10-10 mol L-1. The excellent sensing performance of the composite is attributable to the synergic effects between CIMMO nanoparticles and rGO, which facilitate photoinduced electron-hole separation and assist in the indirect electrochemical reactions/interactions with CIP.
Collapse
Affiliation(s)
- Jedsada Chuiprasert
- Graduate
Program in Environmental and Water Resources Engineering, Department
of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon
Pathom 73170, Thailand
| | - Sira Srinives
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Narin Boontanon
- Faculty
of Environment and Resource Studies, Mahidol
University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chongrak Polprasert
- Department
of Civil Engineering, Faculty of Engineering, Thammasat University, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nudjarin Ramungul
- National
Metal and Materials Technology Center, National Science and Technology
Development Agency, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Apisit Karawek
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Suwanna Kitpati Boontanon
- Graduate
Program in Environmental and Water Resources Engineering, Department
of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon
Pathom 73170, Thailand
- Graduate
School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Zhao Z, Wang X, Wang S, Xiao Z, Zhai S, Ma J, Dong X, Sun H, An Q. Three-Dimensional Hierarchical Seaweed-Derived Carbonaceous Network with Designed g-C 3N 4 Nanosheets: Preparation and Mechanism Insight for 4-Nitrophenol Photoreduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11054-11067. [PMID: 36049185 DOI: 10.1021/acs.langmuir.2c01700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of g-C3N4-based photocatalysts with abundant active sites is of great significance for photocatalytic reactions. Herein, a smart and robust strategy was presented to fabricate three-dimensional (3D) g-C3N4 nanosheet-coated alginate-based hierarchical porous carbon (g-C3N4@HPC), including coating melamine on calcium alginate (CA) hydrogel beads, freeze-drying hydrogel beads as well as pyrolysis at high temperatures. The resulting photocatalyst possessed a significantly high surface area and a large amount of interconnected macropores compared with porous carbon without the melamine coating. The unique structural features could effectively inhibit the curling and agglomeration of g-C3N4 nanosheets, provide abundant photocatalytic active sites, and promote mass diffusion. Therefore, the g-C3N4@HPC composite exhibited remarkable photocatalytic activity and outstanding stability toward the photoreduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 under natural sunlight and simulated visible-light irradiation (λ > 420 nm) using a 300 W xenon lamp. Moreover, the mechanism toward the photocatalytic reaction was extensively studied by quenching experiments and electron spin resonance (ESR) experiments. The results showed that active hydrogen species were able to be achieved by following a dual-channel pathway in the NaBH4 system, which included photocatalytic reduction of H+ ions and photocatalytic oxidation of BH4- ions. This work not only opens up a new way to design efficient photocatalysts for various reactions but also provides a reference for an in-depth study of the photoreduction mechanism.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xuting Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaoli Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Haodong Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
3
|
Bharath G, Hai A, Kiruthiga T, Rambabu K, Sabri MA, Park J, Choi MY, Banat F, Haija MA. Fabrication of Ru-CoFe 2O 4/RGO hierarchical nanostructures for high-performance photoelectrodes to reduce hazards Cr(VI) into Cr(III) coupled with anodic oxidation of phenols. CHEMOSPHERE 2022; 299:134439. [PMID: 35351477 DOI: 10.1016/j.chemosphere.2022.134439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Dual-functional photo (electro)catalysis (PEC) is a key strategy for removing coexisting heavy metals and phenolic compounds from wastewater treatment systems. To design a PEC cell, it is crucial to use chemically stable and cost-effective bifunctional photocatalysts. The present study shows that ruthenium metallic nanoparticles decorated with CoFe2O4/RGO (Ru-CoFe2O4/RGO) are effective bifunctional photoelectrodes for the reduction of Cr(VI) ions. Ru-CoFe2O4/RGO achieves a maximum Cr(VI) reduction rate of 99% at 30 min under visible light irradiation, which is much higher than previously reported catalysts. Moreover, PEC Cr(VI) reduction rate is also tuned by adding varying concentration of phenol. A mechanism for the concurrent removal of Cr(VI) and phenol has been revealed over a bifunctional Ru-CoFe2O4/RGO catalyst. A number of key conclusions emerged from this study, demonstrating the dual role of phenol during Cr(VI) reduction by PEC. Anodic oxidation of phenol produces the enormous H+ ion, which appears to be a key component of Cr(VI) reduction. Additionally, phenolic molecules serve as hole (h+) scavengers that reduce e-/h+ recombination, thus enhancing the reduction rate of Cr(VI). Therefore, the Ru-CoFe2O4/RGO photoelectrode exhibits a promising capability of reducing both heavy metals and phenolic compounds simultaneously in wastewater.
Collapse
Affiliation(s)
- G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - T Kiruthiga
- Centre for Nanoscience and Technology, Anna University, Chennai, 600025, India
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - Juhyeon Park
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates.
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Wang Y, Zhao J, Chen M, Huang X, Xu Y. Fast organic degradation on Ti- and Bi-based photocatalysts via co-deposited Pt and Ni 3(PO 4) 2 nanoparticles. J Colloid Interface Sci 2021; 600:629-638. [PMID: 34044230 DOI: 10.1016/j.jcis.2021.05.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Environmental remediation via semiconductor (SC) photocatalysis has attracted great attention over the past three decades. However, prospect for large scale application is still under debate, basically due to the bottleneck of fast charge recombination and/or slow surface reaction. Herein we report a universal solution of speeding up organic degradation simply via co-deposited Pt and nickel phosphate (NiP). Several representative SCs have been examined, including TiO2 (anatase, rutile, and brookite) under a 320 nm light, and Bi-based SC (BiVO4, Bi2WO6, and Bi2MoO6) under a 420 nm light. In all cases, the rates of phenol degradation in aqueous solution always varied not only in the order of NiP/Pt/SC > Pt/SC > NiP/SC > SC, but also NiP/Pt/SC > (Pt/SC + NiP/SC + SC). Meanwhile, hydroquinone and benzoquinone were produced as the main intermediates, but their concentration was much lower than that of phenol decreased, especially for NiP-containing sample. The solid was characterized with several techniques, including photoluminescence and (photo)electrochemical measurement. It is proposed that Pt and NiP act as co-catalysts for O2 reduction and phenol oxidation, respectively. Such electron and hole transfer promote each other, additionally improving the efficiency of charge separation, and further increasing the rates of surface reactions. This work highlights the necessity of a versatile co-catalyst in SC photocatalysis.
Collapse
Affiliation(s)
- Yaru Wang
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jianjun Zhao
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Min Chen
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xubo Huang
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yiming Xu
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Photocatalytic Phenol Degradation by Silica-Modified Titanium Dioxide. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Titanium dioxide (TiO2) has been widely applied as a photocatalyst for wastewater treatment due to its high photocatalytic activity and it can remove various harmful organic pollutants effectively. Under heated system, however, TiO2 is prone to agglomeration that decrease its abilities as a photocatalyst. In order to overcome the agglomeration and increase its thermal resistance, addition of silica (SiO2) as supporting material is proposed in this research. Silica or silicon dioxide can be extracted from natural resources such as beach sand. Here, we report the application of a composite photocatalyst of TiO2/SiO2 to remove phenolic compounds in wastewater. The photocatalyst was synthesized by adding SiO2 from beach sand onto TiO2 through impregnation methods. The results of the X-ray diffraction (XRD) showed that TiO2 was present in the anatase phase. The highest crystallinity was obtained by TiO2/SiO2 ratios of 7:1. SEM results showed that the shape of the particles was spherical. Further characterizations were conducted using Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) analysis, and a particle size analyzer (PSA). By using the optimized condition, 96.05% phenol was degraded by the synthesized photocatalyst of TiO2/SiO2, under UV irradiation for 120 min. The efficiency of the TiO2/SiO2 is 3.5 times better than commercial TiO2 P25 for the Langmuir–Hinshelwood first-order kinetic model.
Collapse
|
6
|
Abstract
Catalytic air oxidation (CAO) is an economical, environmentally friendly, and efficient
technology used to treat wastewater that contains refractory organics. This review analyzes recent
studies regarding five common types of CAO that use external energy sources (heat, light radiation,
microwave, and electricity) or non-oxidizing chemical promoters (nitrites and sulfites). Methods
include hydrothermal, electro-assisted, photocatalytic, microwave-assisted, and non-oxidizing
chemical-assisted CAO. The associated catalytic mechanisms are discussed in detail in order to explain
the connections between CAO catalytic pathways. Mechanisms include O2 activation via excitation,
free-radical autocatalytic reactions, and coordination catalysis. Classical kinetic mechanisms,
including Mars-van Krevelen and Langmuir-Hinshelwood, are also proposed to reveal
overall CAO dynamic processes. The catalysts used in each CAO technology are summarized, with
a focus on their catalytic pathways and the methods by which they might be improved. Finally, important
challenges and research directions are proposed. The proposals focus on further research regarding
catalyst mechanisms, mechanism-guided catalyst design, and process improvement.
Collapse
Affiliation(s)
- Qi Jing
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huan li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|