1
|
Transparent Gelation of Ionic Liquids Trapped in Silicone Microcup Structures under Scanning Electron Microscopy. Gels 2023; 9:gels9030179. [PMID: 36975628 PMCID: PMC10048398 DOI: 10.3390/gels9030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
It is expected that ionic liquids will be used in the future as electrolytes for electric double layer capacitors, but currently microencapsulation with a conductive or porous shell is required for their fabrication. Here, we succeeded in fabricating a transparently gelled ionic liquid trapped in hemispherical silicone microcup structures just by observing with a scanning electron microscope (SEM), which allows the microencapsulation process to be eliminated and electrical contacts to be formed directly. To see the gelation, small amounts of ionic liquid were exposed to the SEM electron beam on flat aluminum, silicon, silica glass, and silicone rubber. The ionic liquid gelled on all the plates, and a color change to brown was observed on all the plates except for silicone rubber. This change might be caused by reflected and/or secondary electrons from the plates producing isolated carbon. Silicone rubber could remove the isolated carbon due to the large amount of oxygen inside it. Fourier transform infrared spectroscopy revealed that the gelled ionic liquid included a large amount of the original ionic liquid. Moreover, the transparent, flat gelled ionic liquid could also be made into three-layer structures on silicone rubber. Consequently, the present transparent gelation is suitable for silicone rubber-based microdevices.
Collapse
|
2
|
Kukawka R, Spychalski M, Stróżyk E, Byzia E, Zajac A, Kaczyński P, Łozowicka B, Pospieszny H, Smiglak M. Synthesis, characterization and biological activity of bifunctional ionic liquids based on dodine ion. PEST MANAGEMENT SCIENCE 2022; 78:446-455. [PMID: 34505331 DOI: 10.1002/ps.6639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Development of new plant protection strategies has become an urgent matter in modern agriculture, in view of the evidently proved negative effect of currently used active ingredients of pesticides. In recent years, much effort has been made to eliminate the use of pesticides established to be toxic to pollinators. RESULTS In this study, we present a group of new bifunctional ionic liquids based on dodine (N-dodecylguanidine) cation whose physical and biological properties have been modified relative to those of the commercially available N-dodecylguanidine acetate. The decreased level of residue of active substances in plant tissues reduces their availability to pollinators, which increases the safety of their use. Moreover, lower environmental impact in combination with high antifungal activity and an additional biological function, that is the systemic acquired resistance induction, are in line with the goals of sustainable agriculture. CONCLUSION The presented approach shows the possibility of derivatization of commonly used fungicide into the form of bifunctional salts whose physical and biological properties can be easily modified. The paper reports successful design and synthesis of new sustainable and green chemicals for the modern agriculture, being less toxic to the environment and human health but still effective against pathogens. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafal Kukawka
- Innosil Sp. z o.o, Rubiez 46, Poznan, 61-612, Poland
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Maciej Spychalski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Ewa Stróżyk
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Ewa Byzia
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Adrian Zajac
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Piotr Kaczyński
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chełmońskiego 22, Bialystok, 15-195, Poland
| | - Bożena Łozowicka
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chełmońskiego 22, Bialystok, 15-195, Poland
| | - Henryk Pospieszny
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
- Plant Protection Institute - National Research Institute, Department of Virology and Bacteriology, Węgorka 20, Poznan, 60-318, Poland
| | - Marcin Smiglak
- Innosil Sp. z o.o, Rubiez 46, Poznan, 61-612, Poland
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| |
Collapse
|
3
|
Erdem P, Tağaç AA, Bozkurt SS, Merdivan M. Chitosan and dicationic ionic liquid intercalated clay-coated solid-phase microextraction fiber for determination of sixteen polycyclic aromatic hydrocarbons in coffee and tea samples. Talanta 2021; 235:122764. [PMID: 34517625 DOI: 10.1016/j.talanta.2021.122764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022]
Abstract
In the present study, solid-phase microextraction (SPME) fiber was prepared by coating clay (MMT)-chitosan (CH) and dicationic ionic liquid (DIL) onto the stainless-steel wire step by step. The characterization of fibers was performed by Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction analysis, and scanning electron microscopy. The prepared fibers were evaluated for separation and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in coffee and tea samples in headspace- and direct immersion-SPME by coupling with gas chromatography/mass spectrometry. The analytical performance of MMT/CH/DIL fibers was carried out for the extraction of PAHs and compared with the performance of carboxen/polydimethylsiloxane (CAR/PDMS) and divinylbenzene/CAR/PDMS (DVB/CAR/PDMS) fibers under optimized conditions. The wider linear ranges between 0.001 and 25 μg L-1 with a coefficient of determination above 0.9962, low limits of detection between 0.0001 and 0.05 μg L-1 and good intra-day repeatability from 2.45 to 6.48 % and fiber-to-fiber reproducibility from 3.19 % to 8.82 % were obtained for all PAHs in both methods with MMT/CH/octyl (O)-DIL fiber. The extraction recoveries of coffee and tea samples ranged from 87.5 to 112 % using the MMT/CH/O-DIL fiber in both SPME methods.
Collapse
Affiliation(s)
- Pelin Erdem
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Aylin Altınışık Tağaç
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Serap Seyhan Bozkurt
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Melek Merdivan
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey.
| |
Collapse
|
5
|
Elongated-Hexagonal Photonic Crystal for Buffering, Sensing, and Modulation. NANOMATERIALS 2021; 11:nano11030809. [PMID: 33809856 PMCID: PMC8004163 DOI: 10.3390/nano11030809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
A paradigm for high buffering performance with an essential fulfillment for sensing and modulation was set forth. Through substituting the fundamental two rows of air holes in an elongated hexagonal photonic crystal (E-PhC) by one row of the triangular gaps, the EPCW is molded to form an irregular waveguide. By properly adjusting the triangle dimension solitary, we fulfilled the lowest favorable value of the physical-size of each stored bit by about μ5.5510 μm. Besides, the EPCW is highly sensitive to refractive index (RI) perturbation attributed to the medium through infiltrating the triangular gaps inside the EPCW by microfluid with high RI sensitivity of about 379.87 nm/RIU. Furthermore, dynamic modulation can be achieved by applying external voltage and high electro-optical (EO) sensitivity is obtained of about 748.407 nm/RIU. The higher sensitivity is attributable to strong optical confinement in the waveguide region and enhanced light-matter interaction in the region of the microfluid triangular gaps inside the EPCW and conventional gaps (air holes). The EPCW structure enhances the interaction between the light and the sensing medium.
Collapse
|
6
|
High Figure of Merit Optical Buffering in Coupled-Slot Slab Photonic Crystal Waveguide with Ionic Liquid. NANOMATERIALS 2020; 10:nano10091742. [PMID: 32899131 PMCID: PMC7558017 DOI: 10.3390/nano10091742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/01/2022]
Abstract
Slow light with adequate low group velocity and wide bandwidth with a flat band of the zero-dispersion area were investigated. High buffering capabilities were obtained in a silicon-polymer coupled-slot slab photonic crystal waveguide (SP-CS-SPCW) with infiltrating slots by ionic liquid. A figure of merit (FoM) around 0.663 with the lowest physical bit length Lbit of 4.6748 µm for each stored bit in the optical communication waveband was gained by appropriately modifying the square air slot length. Posteriorly, by filling the slots with ionic liquid, the Lbit was enhanced to be 4.2817 μm with the highest FoM of 0.72402 in wider transmission bandwidth and ultra-high bit rate in terabit range, which may become useful for the future 6G mobile communication network. Ionic liquids have had a noticeable effect in altering the optical properties of photonic crystals. A polymer was used for the future incorporation of an electro-optic effect in buffers to realize the dynamic controlling of optical properties. Ionic liquids enhanced the transmission rate through optical materials. Additionally, the delay time in the ns-range was achieved, providing longer delay and ultra-low group velocity, which is important for light-matter interaction in light amplifiers and nonlinear devices.
Collapse
|