1
|
Lebedev VT, Kulvelis YV, Shvidchenko AV, Primachenko ON, Odinokov AS, Marinenko EA, Kuklin AI, Ivankov OI. Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds. MEMBRANES 2023; 13:850. [PMID: 37999338 PMCID: PMC10673602 DOI: 10.3390/membranes13110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4-5 nm, 0.25-5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided the hydrophilicity of the diamond surface with positive or negative potential, or that strengthened the hydrophobicity of the diamonds. These variations in diamond properties allowed us to find ways to improve the composite structure so as to achieve better ion conductivity. For this purpose, we prepared three series of membrane films by first casting solutions of perfluorinated Aquivion®-type copolymers with short side chains mixed with diamonds dispersed on solid substrates. Then, we removed the solvent and the membranes were structurally stabilized during thermal treatment and transformed into their final form with -SO3H ionic groups. We found that the diamonds with a hydrogen-saturated surface, with a positive charge in aqueous media, contributed to the increase in proton conductivity of membranes to a greater rate. Meanwhile, a more developed conducting diamond-copolymer interface was formed due to electrostatic attraction to the sulfonic acid groups of the copolymer than in the case of diamonds grafted with negatively charged carboxyls, similar to sulfonic groups of the copolymer. The modification of membranes with fluorinated diamonds led to a 5-fold decrease in the conductivity of the composite, even when only a fraction of diamonds of 1 wt. % were used, which was explained by the disruption in the connectivity of ion channels during the interaction of such diamonds mainly with fluorocarbon chains of the copolymer. We discussed the specifics of the mechanism of conductivity in composites with various diamonds in connection with structural data obtained in neutron scattering experiments on dry membranes, as well as ideas about the formation of cylindrical micelles with central ion channels and shells composed of hydrophobic copolymer chains. Finally, the characteristics of the network of ion channels in the composites were found depending on the type and amount of introduced diamonds, and correlations between the structure and conductivity of the membranes were established.
Collapse
Affiliation(s)
- Vasily T. Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Yuri V. Kulvelis
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | | | - Oleg N. Primachenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (E.A.M.)
| | - Alexei S. Odinokov
- Russian Research Center of Applied Chemistry, 193232 St. Petersburg, Russia;
| | - Elena A. Marinenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (E.A.M.)
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (A.I.K.); (O.I.I.)
| | - Oleksandr I. Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (A.I.K.); (O.I.I.)
| |
Collapse
|
2
|
Dib N, Falcone RD, Acuña A, García-Río L. Ionic liquid-based reverse micelles. Use of hydrogen–deuterium exchange as a tool for surfactant self-assembly characterization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
M. O. Lépori C, Soledad Orellano M, Mariano Correa N, Silber JJ, Darío Falcone R. Understanding the interfacial properties of bmim-AOT reverse micelles for their application as nanoreactors. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Banerjee S, Bardhan S, Senapati S. Structural Transitions at the Water/Oil Interface by Ionic-Liquid-like Surfactant, 1-Butyl-3-methylimidazolium Dioctyl Sulfosuccinate: Measurements and Mechanism. J Phys Chem B 2022; 126:2014-2026. [PMID: 35213168 DOI: 10.1021/acs.jpcb.1c08602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reverse micelle (RM) aggregates have a wide range of applications in various areas of science and technology. A continuous demand exists to replace interfacial surfactant molecules with various nonconventional amphiphiles. Ionic liquid (IL)-like surfactants (IL-surf's) constitute a class of such molecules that are being researched extensively. Here, we have formulated several water/IL-surf/oil microemulsions by optimizing the core droplet size with varying oil phases. The best composition of water/[BMIM][AOT]/IPM ([BMIM][AOT]: 1-butyl-3-methylimidazolium dioctyl sulfosuccinate; IPM: isopropyl myristate) was then analyzed in detail through experimental and computer simulations. Our results from DLS measurements suggest a structural transition from spherical aggregates in the parent water/[Na][AOT]/IPM solution to cylindrical droplets in the IL-surf-based system. The Raman and ATR-FTIR spectral analysis suggest a variation in the microstructure of the water/oil interface due to the differential interaction of the counterions with AOT headgroups and water. Molecular dynamics simulation results provided the direct image of the interface showing a structured versus uneven water/oil interface in [Na][AOT] versus [BMIM][AOT] RMs, where the larger [BMIM] cations weakly bind with the AOT headgroups due to their low charge density. Finally, an application of this IL-surf-based formulation was tested by carrying out a Heck cross-coupling reaction that showed significantly higher yield under milder reaction conditions.
Collapse
Affiliation(s)
- Shankha Banerjee
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soumik Bardhan
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Kumar A, Nothling MD, Aitken HM, Xiao Z, Lam M, Bell CA, O'Mara ML, Connal LA. Simple synthetic route to an enzyme-inspired transesterification catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembling transesterification catalyst inspired by the catalytic triad.
Collapse
Affiliation(s)
- Ashwani Kumar
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | | | - Heather M. Aitken
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Matthew Lam
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Craig A. Bell
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Megan L. O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
6
|
Dib N, Girardi VR, Silber JJ, Correa NM, Falcone RD. How the external solvent in biocompatible reverse micelles can improve the alkaline phosphatase behavior. Org Biomol Chem 2021; 19:4969-4977. [PMID: 34002175 DOI: 10.1039/d0ob02371j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last decade, the nature of the nonpolar solvents that can be part of reverse micelles (RMs) has been the topic of several investigations to improve their applications. In this sense, the hydrolysis of 1-naphthyl phosphate catalyzed by the enzyme alkaline phosphatase (AP) was used as a probe to investigate the effect of the change of the external solvent on RMs formulated with the anionic surfactant sodium diethylhexyl sulfosuccinate (AOT). As external nonpolar solvents, two biocompatible lipophilic esters, isopropyl myristate and methyl laurate, and the traditional nonpolar solvents, n-heptane and benzene, were used. The results were compared among the RMs investigated and with the reaction in homogeneous media. Thus, the effect of the nanoconfinement as well as the impact of the replacement of a conventional external nonpolar solvent by biocompatible solvents were analyzed. The results indicate that the catalytic efficiency in the AOT RMs is larger than that in homogeneous media, denoting a different hydration level over the AP enzyme, which is directly related to the different degrees of nonpolar solvent penetration to the RM interface. Our findings demonstrated that toxic solvents such as n-heptane and benzene can be replaced by nontoxic ones (isopropyl myristate or methyl laurate) in AOT RMs without affecting the performance of micellar systems as nanoreactors, making them a green and promising alternative toward efficient and sustainable chemistry.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina and Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| | - Valeria R Girardi
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
| | - Juana J Silber
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina and Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina and Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina and Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
7
|
Biocompatible Solvents and Ionic Liquid-Based Surfactants as Sustainable Components to Formulate Environmentally Friendly Organized Systems. Polymers (Basel) 2021; 13:polym13091378. [PMID: 33922597 PMCID: PMC8122929 DOI: 10.3390/polym13091378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
In this review, we deal with the formation and application of biocompatible water-in-oil microemulsions commonly known as reverse micelles (RMs). These RMs are extremely important to facilitate the dissolution of hydrophilic and hydrophobic compounds for biocompatibility in applications in drug delivery, food science, and nanomedicine. The combination of two wisely chosen types of compounds such as biocompatible non-polar solvents and ionic liquids (ILs) with amphiphilic character (surface-active ionic liquids, SAILs) can be used to generate organized systems that perfectly align with the Green Chemistry concepts. Thus, we describe the current state of SAILs (protic and aprotic) to prepare RMs using non-polar but safe solvents such as esters derived from fatty acids, among others. Moreover, the use of the biocompatible solvents as the external phase in RMs and microemulsions/nanoemulsions with the other commonly used biocompatible surfactants is detailed showing the diversity of preparations and important applications. As shown by multiple examples, the properties of the RMs can be modified by changes in the type of surfactant and/or external solvents but a key fact to note is that all these modifications generate novel systems with dissimilar properties. These interesting properties cannot be anticipated or extrapolated, and deep analysis is always required. Finally, the works presented provide valuable information about the use of biocompatible RMs, making them a green and promising alternative toward efficient and sustainable chemistry.
Collapse
|
8
|
Dib N, Falcone RD, García-Río L. Hydrolysis Reactions of Two Benzoyl Chlorides as a Probe to Investigate Reverse Micelles Formed by the Ionic Liquid-Surfactant bmim-AOT. J Org Chem 2020; 85:15006-15014. [PMID: 33147953 DOI: 10.1021/acs.joc.0c01740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, two hydrolysis reactions were used as a probe to investigate the properties of reverse micelles (RMs) formed by the ionic liquid-surfactant 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT). The results were compared with those found for RMs generated with sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT). As external nonpolar solvents, n-heptane (n-Hp), isopropyl myristate (IPM), and methyl laurate (ML) were used. Thus, the effect of changing the Na+ cation by bmim+ was analyzed, as well as the impact of the replacement of a conventional external nonpolar solvent by biocompatible solvents. The kinetics of the hydrolysis reactions of 4-methoxybenzoyl chloride (OMe) and 4-(trifluoromethyl)benzoyl chloride (CF3) were studied. The results indicate that the replacement of the Na+ counterion by bmim+ in AOT RMs alters the rates of reactions carried out in them and produces changes in the reaction mechanism. In bmim-AOT RMs, the bmim+ cation is located between the surfactant molecules; this has an important influence on the reaction intermediates' stability and, therefore, in the reaction rates and mechanisms. Also, the results indicate that when IPM is used as an external solvent instead of ML or n-Hp, interfacial water molecules have larger nucleophilicity due to the higher interface penetration of IPM.
Collapse
Affiliation(s)
- Nahir Dib
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET, Departamento de Quı́mica, Universidad Nacional de Rı́o Cuarto, Agencia Postal # 3, C.P. X5804BYA Rı́o Cuarto, Argentina
| | - R Dario Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET, Departamento de Quı́mica, Universidad Nacional de Rı́o Cuarto, Agencia Postal # 3, C.P. X5804BYA Rı́o Cuarto, Argentina
| | - Luis García-Río
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Fı́sica, Universidade de Santiago de Compostela, 15782 Santiago, Spain
| |
Collapse
|
9
|
Ridley RE, Alvarado E, Mrse AA, Vasquez VR, Graeve OA. Phase Stability and Miscibility in Ethanol/AOT/ n-Heptane Systems: Evidence of Multilayered Cylindrical and Spherical Microemulsion Morphologies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11274-11283. [PMID: 32897721 DOI: 10.1021/acs.langmuir.0c01851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We describe the effects of ethanol on the phase behavior of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-heptane. Using dynamic light scattering (DLS), molecular dynamics (MD) simulations, and nuclear magnetic resonance (1H NMR) spectroscopy, we investigate the aggregation behavior of AOT across a wide range of ethanol/AOT/n-heptane compositions. We conclude that reverse micelles do not form at any of the investigated concentrations. Instead, we observe the formation of other surfactant aggregate morphologies unique to this system, namely, multilayered cylindrical structures and spherical AOT-in-ethanol structures, which vary significantly with changes in ethanol concentration. We also identify mixed-solvent polarity as a driving factor for the surfactant behavior in the system. When the concentration of ethanol is 20 wt % or below, the system is inhomogeneous with varying sizes of AOT, ethanol, and AOT + ethanol aggregates, with the ethanol primarily exhibiting a cosurfactant behavior, almost exclusively binding at the surface of AOT aggregates. With increased ethanol concentration, the ethanol in the system also exhibits solvent-like behaviors in addition to the cosurfactant behaviors. Most significantly, when the ethanol concentration is raised above 35 wt %, the transition to solvent-like behavior allows AOT Na+ counterions to dissociate from the headgroups and they are dissolved in the ethanol. We use these results to construct a preliminary phase diagram for the ethanol/AOT/n-heptane system.
Collapse
Affiliation(s)
- Robyn E Ridley
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093-0411, United States
| | - Erick Alvarado
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093-0411, United States
| | - Anthony A Mrse
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0307, United States
| | - Victor R Vasquez
- Chemical and Materials Engineering, University of Nevada, Reno, Nevada 89557, United States
| | - Olivia A Graeve
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093-0411, United States
| |
Collapse
|
10
|
Dib N, Silber JJ, Correa NM, Falcone RD. Imim-DEHP reverse micelles investigated with two molecular probes reveals how are the interfacial properties and the coordination behavior of the surfactant. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Dib N, Falcone RD, Acuña A, García-Río L. The ionic liquid-surfactant bmim-AOT and nontoxic lipophilic solvents as components of reverse micelles alternative to the traditional systems. A study by 1H NMR spectroscopy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|