1
|
Walters SH, Birchfield AS, Fuglestad B. Advances in utilizing reverse micelles to investigate membrane proteins. Biochem Soc Trans 2024; 52:2499-2511. [PMID: 39508380 DOI: 10.1042/bst20240830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as tools to investigate the physical properties of membranes and their associated water, RMs also effectively house membrane associated proteins for a variety of studies. High-resolution protein NMR revealed a need for development of improved RM formulations, which greatly enhanced the use of RMs for aqueous proteins. Protein-optimized RM formulations enabled encapsulation of challenging membrane associated protein types, including lipidated proteins, transmembrane proteins, and peripheral membrane proteins. Improvements in biological accuracy of RMs using phospholipid-based surfactants has advanced their utility as a membrane mimetic even further, better matching the chemistry of the most common cellular membrane lipids. Natural lipid extracts may also be used to construct RMs and house proteins, resulting in a membrane model that better represents the complexity of biological membranes. Recent applications in high-resolution investigations of protein-membrane interactions and inhibitor design of membrane associated proteins have demonstrated the usefulness of these systems in addressing this difficult category of protein. Further developments of RMs as membrane models will enhance the breadth of investigations facilitated by these systems and will enhance their use in biophysical, structural, and drug discovery pursuits of membrane associated proteins. In this review, we present the development of RMs as membrane models and their application to structural and biophysical study of membrane proteins.
Collapse
Affiliation(s)
- Sara H Walters
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Aaron S Birchfield
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, U.S.A
| |
Collapse
|
2
|
Val DS, Di Nardo L, Marchisio F, Peiru S, Castelli ME, Abriata LA, Menzella HG, Rasia RM. Thermal Stabilization of a Bacterial Zn(II)-Dependent Phospholipase C through Consensus Sequence Design. Biochemistry 2024; 63:348-354. [PMID: 38206322 DOI: 10.1021/acs.biochem.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Proteins' extraordinary performance in recognition and catalysis has led to their use in a range of applications. However, proteins obtained from natural sources are oftentimes not suitable for direct use in industrial or diagnostic setups. Natural proteins, evolved to optimally perform a task in physiological conditions, usually lack the stability required to be used in harsher conditions. Therefore, the alteration of the stability of proteins is commonly pursued in protein engineering studies. Here, we achieved a substantial thermal stabilization of a bacterial Zn(II)-dependent phospholipase C by consensus sequence design. We retrieved and analyzed sequenced homologues from different sources, selecting a subset of examples for expression and characterization. A non-natural consensus sequence showed the highest stability and activity among those tested. Comparison of the stability parameters of this stabilized mutant and other natural variants bearing similar mutations allows us to pinpoint the sites most likely to be responsible for the enhancement. Point mutations in these sites alter the unfolding process of the consensus sequence. We show that the stabilized version of the protein retains full activity even in harsh oil degumming conditions, making it suitable for industrial applications.
Collapse
Affiliation(s)
- Diego S Val
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), FbioyF-UNR-CONICET. Mitre 1998, 2000 Rosario, Argentina
| | - Luisina Di Nardo
- Instituto de Biología Celular y Molecular de Rosario (IBR), FbioyF-UNR-CONICET. Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Fiorela Marchisio
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), FbioyF-UNR-CONICET. Mitre 1998, 2000 Rosario, Argentina
| | | | - María Eugenia Castelli
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), FbioyF-UNR-CONICET. Mitre 1998, 2000 Rosario, Argentina
| | | | - Hugo G Menzella
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), FbioyF-UNR-CONICET. Mitre 1998, 2000 Rosario, Argentina
| | - Rodolfo M Rasia
- Instituto de Biología Celular y Molecular de Rosario (IBR), FbioyF-UNR-CONICET. Ocampo y Esmeralda, 2000 Rosario, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica, Ocampo y Esmeralda, 2000 Rosario, Argentina
| |
Collapse
|
3
|
Bogojevic O, Zhang Y, Wolff CD, Nygaard JV, Wiking L, Arevång C, Guo Z. A sustainable and regioselective synthesis of Hemi-bis(monoacylglycero)phosphates and bis(diacylglycero)phosphates. iScience 2023; 26:107075. [PMID: 37448559 PMCID: PMC10336169 DOI: 10.1016/j.isci.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
A sustainable and green approach was developed for the scalable synthesis of uncommon naturally occurring phospholipid species, Hemi-bis(monoacylglycero)phosphates (Hemi-BMPs) and bis(diacylglycero)phosphates (BDPs) via the phospholipase D (PLD) mediated transphosphatidylation. PLD from Streptomyces sp. showed great substrate promiscuity for both phospholipids from different biological sources, and alcohol donors with diverse regiochemistry; monoacylglycerols with diverse fatty acyl structures (C12-C22), affording 74-92 wt% yields in 2 h. Experimental results demonstrated that the reaction rate is rather independent of phosphatidyls but to a large extent governed by the size, shape and regiolocation of fatty acyls incorporated on the glycerol backbone, particularly for the regio-isomers of bulky diacylglycerols (Sn-1,3 or Sn-1,2), which displays great diversity. In addition, a plausible mechanism is proposed based on molecular simulations for an elaborated explanation of the reaction thermodynamic and kinetic favorability toward the synthesis of Hemi-BMPs and BDPs.
Collapse
Affiliation(s)
- Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Christian Daugaard Wolff
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Lars Wiking
- Department of Food Science, CiFOOD, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Bao Y, Pignitter M. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Compr Rev Food Sci Food Saf 2023; 22:2678-2705. [PMID: 37097053 PMCID: PMC10962568 DOI: 10.1111/1541-4337.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.
Collapse
Affiliation(s)
- Yifan Bao
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Marc Pignitter
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
| |
Collapse
|
5
|
A Review of Polymeric Micelles and Their Applications. Polymers (Basel) 2022; 14:polym14122510. [PMID: 35746086 PMCID: PMC9230755 DOI: 10.3390/polym14122510] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022] Open
Abstract
Self-assembly of amphiphilic polymers with hydrophilic and hydrophobic units results in micelles (polymeric nanoparticles), where polymer concentrations are above critical micelle concentrations (CMCs). Recently, micelles with metal nanoparticles (MNPs) have been utilized in many bio-applications because of their excellent biocompatibility, pharmacokinetics, adhesion to biosurfaces, targetability, and longevity. The size of the micelles is in the range of 10 to 100 nm, and different shapes of micelles have been developed for applications. Micelles have been focused recently on bio-applications because of their unique properties, size, shape, and biocompatibility, which enhance drug loading and target release in a controlled manner. This review focused on how CMC has been calculated using various techniques. Further, micelle importance is explained briefly, different types and shapes of micelles are discussed, and further extensions for the application of micelles are addressed. In the summary and outlook, points that need focus in future research on micelles are discussed. This will help researchers in the development of micelles for different applications.
Collapse
|
6
|
Smorygina AS, Golysheva EA, Dzuba SA. Clustering of Stearic Acids in Model Phospholipid Membranes Revealed by Double Electron-Electron Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13909-13916. [PMID: 34787421 DOI: 10.1021/acs.langmuir.1c02460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Free fatty acids play various important roles in biological membranes. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) of spin-labeled biomolecules is capable of studying magnetic dipole-dipole (d-d) interactions between spin labels at the nanoscale range of distances. Here, DEER is applied to study intermolecular d-d interactions between doxyl-spin-labeled stearic acids (DSA) in gel-phase phospholipid bilayers composed either of an equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine or of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. DEER data obtained for different DSA concentrations showed that DSA molecules at their concentration in the bilayer χ larger than 0.5 mol % are assembled into lateral lipid-mediated clusters, with a characteristic intermolecular distance of 2 nm. Some evidences were obtained indicating that clusters may consist of "subclusters", alternatively appearing in two opposite leaflets. Conventional electron paramagnetic resonance (EPR) spectra for the gel-phase bilayers showed that for χ larger than 2 mol % the molecules in the clusters stick together, forming oligomers. Room-temperature EPR spectra for the liquid-crystalline phase were found to change noticeably for χ larger than 0.5 mol %, which may indicate the clustering in a liquid-crystalline phase similar to that observed by DEER in the gel phase.
Collapse
Affiliation(s)
- Anna S Smorygina
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Vierros S, Sammalkorpi M. Hybrid Atomistic and Coarse-Grained Model for Surfactants in Apolar Solvents. ACS OMEGA 2019; 4:15581-15592. [PMID: 31572859 PMCID: PMC6761742 DOI: 10.1021/acsomega.9b01959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Here, we develop and verify the performance of a hybrid molecular modeling approach that combines coarse-grained apolar solvent and atomistic solute or polar solvent description, for example, for description of reverse micellar systems. The coarse-grained solvent model is directly applicable to organic solvents encompassing alkane, alkene, and fatty acid ester functional groups and connects directly to both standard united-atom GROMOS 53A6 and all-atom CHARMM27 force fields, as well as the atomistic detail water models compatible with these force fields. The different levels of description are coupled via explicit, unscaled electrostatics, and scaled mixing rules for dispersive interactions. The hybrid model is in near-quantitative agreement with fully atomistic simulations when combined with the CHARMM27 model but underestimates modestly surfactant aggregation when using GROMOS 53A6 united-atom description. The use of truncated electrostatics affords up to a 9-fold increase in computational speed without significant loss of accuracy. However, long-range electrostatic calculations and load imbalance at high core counts can significantly degrade the performance. We demonstrate the usability of the hybrid model by assessing the reverse micelle formation of a homologous series of nonionic glycerolipids via large-scale self-assembly simulations. The presented model is demonstrated here for accurate description of surfactant systems in apolar solvents, with and without also polar solvent (water) in the system. The formulation can be expected to describe well also other solute species or interfaces with an apolar solvent in an apolar environment.
Collapse
Affiliation(s)
- Sampsa Vierros
- Department
of Chemistry and Materials Science and Department of Biomaterials and
Bioproducts, Aalto University, P. O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science and Department of Biomaterials and
Bioproducts, Aalto University, P. O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|