1
|
Hix-Janssens T, Tillo A, Isaieva H, da Silva ZL, Fatahi Z, Larocca M, Sedelius G, Björk Sigurdardóttir S, Sergeeva Y, Al-Dujaili T, Davies JR, Punyani K, Sellergren B. A Reversible and Dynamic Surface Functionalization for Fluidity Controlled Multivalent Recognition of Lectins and Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416658. [PMID: 40285667 DOI: 10.1002/advs.202416658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/04/2025] [Indexed: 04/29/2025]
Abstract
The paper reports the design of multivalent bacterial receptors based on reversible self-assembled monolayers (rSAMs) on gold and glass substrates, mimicking the ligand display on host cells and extracellular matrices. The layers consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with β-galactose (Gal) or sialic acid (SA). The former acts as a mobile ligand binding to the complementary adhesin, LecA, a key virulence factor of the multi-drug-resistant bacterium Pseudomonas aeruginosa (PA). Binary amphiphile mixtures containing either of these ligands, spontaneously self-assemble on carboxylic acid terminated SAMs on gold or glass surfaces to form rSAMs that are easily tunable with respect to the ligand ratio. It is shown that this results in the ability to construct multi-reusable surfaces featuring strong affinity for the bacterial adhesin and recognitive surfaces for bacteria, the latter demonstrated by incubating a culture of PA or the oral commensal species Streptococcus gordonii (SG) on either Gal or SA functionalized rSAMs. In contrast to the mobile ligand display, surfaces featuring covalently attached "static" ligands exhibited low LecA affinity. This approach to wet chemical surface functionalization is unique in imparting both rapid restorability and adaptability, the latter compatible with heteromultivalent receptor designs for boosting lectin and bacteria affinity and specificity.
Collapse
Affiliation(s)
- Thomas Hix-Janssens
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Adam Tillo
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Hanna Isaieva
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Zita Lopes da Silva
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, 205 06, Sweden
| | - Zahra Fatahi
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Michele Larocca
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Gustav Sedelius
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Sara Björk Sigurdardóttir
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Yulia Sergeeva
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
- Surecapture Technologies AB, Forskaren 1, Per Albin Hanssons väg 35, Malmö, 21432, Sweden
| | - Tiba Al-Dujaili
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, 205 06, Sweden
| | | | - Börje Sellergren
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, 205 06, Sweden
- Surecapture Technologies AB, Forskaren 1, Per Albin Hanssons väg 35, Malmö, 21432, Sweden
| |
Collapse
|
2
|
Hix-Janssens T, Davies JR, Turner NW, Sellergren B, Sullivan MV. Molecularly imprinted nanogels as synthetic recognition materials for the ultrasensitive detection of periodontal disease biomarkers. Anal Bioanal Chem 2024; 416:7305-7316. [PMID: 38898327 PMCID: PMC11584468 DOI: 10.1007/s00216-024-05395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Periodontal disease affects supporting dental structures and ranks among one of the top most expensive conditions to treat in the world. Moreover, in recent years, the disease has also been linked to cardiovascular and Alzheimer's diseases. At present, there is a serious lack of accurate diagnostic tools to identify people at severe risk of periodontal disease progression. Porphyromonas gingivalis is often considered one of the most contributing factors towards disease progression. It produces the Arg- and Lys-specific proteases Rgp and Kgp, respectively. Within this work, a short epitope sequence of these proteases is immobilised onto a magnetic nanoparticle platform. These are then used as a template to produce high-affinity, selective molecularly imprinted nanogels, using the common monomers N-tert-butylacrylamide (TBAM), N-isopropyl acrylamide (NIPAM), and N-(3-aminopropyl) methacrylamide hydrochloride (APMA). N,N-Methylene bis(acrylamide) (BIS) was used as a crosslinking monomer to form the interconnected polymeric network. The produced nanogels were immobilised onto a planar gold surface and characterised using the optical technique of surface plasmon resonance. They showed high selectivity and affinity towards their template, with affinity constants of 79.4 and 89.7 nM for the Rgp and Kgp epitope nanogels, respectively. From their calibration curves, the theoretical limit of detection was determined to be 1.27 nM for the Rgp nanogels and 2.00 nM for the Kgp nanogels. Furthermore, they also showed excellent selectivity against bacterial culture supernatants E8 (Rgp knockout), K1A (Kgp knockout), and W50-d (wild-type) strains in complex medium of brain heart infusion (BHI).
Collapse
Affiliation(s)
- Thomas Hix-Janssens
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06, Malmö, Sweden
| | - Nicholas W Turner
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Börje Sellergren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden.
| | - Mark V Sullivan
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
3
|
Sergeeva Y, Yeung SY, Sellergren B. Heteromultivalent Ligand Display on Reversible Self-Assembled Monolayers (rSAMs): A Fluidic Platform for Tunable Influenza Virus Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3139-3146. [PMID: 38197122 PMCID: PMC10811624 DOI: 10.1021/acsami.3c15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
We report on the design of heteromultivalent influenza A virus (IAV) receptors based on reversible self-assembled monolayers (SAMs) featuring two distinct mobile ligands. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with sialic acid (SA) and the neuraminidase inhibitor Zanamivir (Zan), acting as two mobile ligands binding to the complementary receptors hemagglutinin (HA) and neuraminidase (NA) on the virus surface. From ternary amphiphile mixtures comprising these ligands, the amidines spontaneously self-assemble on top of carboxylic acid-terminated SAMs to form reversible mixed monolayers (rSAMs) that are easily tunable with respect to the ligand ratio. We show that this results in the ability to construct surfaces featuring a very strong affinity for the surface proteins and specific virus subtypes. Hence, an rSAM prepared from solutions containing 15% SA and 10% Zan showed an exceptionally high affinity and selectivity for the avian IAV H7N9 (Kd = 11 fM) that strongly exceeded the affinity for other subtypes (H3N2, H5N1, H1N1). Changing the SA/Zan ratio resulted in changes in the relative preference between the four tested subtypes, suggesting this to be a key parameter for rapid adjustments of both virus affinity and selectivity.
Collapse
Affiliation(s)
- Yulia Sergeeva
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty
of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | | | - Börje Sellergren
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty
of Health and Society, Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
4
|
Yeung SY, Sergeeva Y, Pan G, Mittler S, Ederth T, Dam T, Jönsson P, El-Schich Z, Wingren AG, Tillo A, Hsiung Mattisson S, Holmqvist B, Stollenwerk MM, Sellergren B. Reversible Self-Assembled Monolayers with Tunable Surface Dynamics for Controlling Cell Adhesion Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41790-41799. [PMID: 36074978 PMCID: PMC9501787 DOI: 10.1021/acsami.2c12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 05/26/2023]
Abstract
Cells adhering onto surfaces sense and respond to chemical and physical surface features. The control over cell adhesion behavior influences cell migration, proliferation, and differentiation, which are important considerations in biomaterial design for cell culture, tissue engineering, and regenerative medicine. Here, we report on a supramolecular-based approach to prepare reversible self-assembled monolayers (rSAMs) with tunable lateral mobility and dynamic control over surface composition to regulate cell adhesion behavior. These layers were prepared by incubating oxoacid-terminated thiol SAMs on gold in a pH 8 HEPES buffer solution containing different mole fractions of ω-(ethylene glycol)2-4- and ω-(GRGDS)-, α-benzamidino bolaamphiphiles. Cell shape and morphology were influenced by the strength of the interactions between the amidine-functionalized amphiphiles and the oxoacid of the underlying SAMs. Dynamic control over surface composition, achieved by the addition of inert filler amphiphiles to the RGD-functionalized rSAMs, reversed the cell adhesion process. In summary, rSAMs featuring mobile bioactive ligands offer unique capabilities to influence and control cell adhesion behavior, suggesting a broad use in biomaterial design, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| | - Yulia Sergeeva
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| | - Guoqing Pan
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
- Institute
for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212
013, China
| | - Silvia Mittler
- Department
of Physics and Astronomy, University of
Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Tommy Dam
- Division
of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Peter Jönsson
- Division
of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Zahra El-Schich
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| | - Adam Tillo
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| | | | - Bo Holmqvist
- ImaGene-iT
AB, Medicon Village,
Scheelevägen 2, 223 81 Lund, Sweden
| | - Maria M. Stollenwerk
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences and Biofilms-Research Center for Biointerfaces
(BRCB), Faculty of Health and Society, Malmö
University, 205 06 Malmö, Sweden
| |
Collapse
|
5
|
Zangiabadi M, Zhao Y. Selective Binding of Complex Glycans and Glycoproteins in Water by Molecularly Imprinted Nanoparticles. NANO LETTERS 2020; 20:5106-5110. [PMID: 32501718 PMCID: PMC7472588 DOI: 10.1021/acs.nanolett.0c01305] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Synthetic receptors to recognize biological glycans are in great need for modern glycoscience and technology, but their design and synthesis have been a daunting challenge due to strong solvation of carbohydrates in water and structural complexity of the guest. Molecular imprinting in surfactant micelles with amide cross-linkers provides a convenient one-pot method to prepare nanoparticle receptors for glycosides, glycans, and glycoproteins, taking advantage of hydrogen-bonding interactions near the surfactant/water interface. Biologically competitive micromolar binding affinities were obtained in water and subtle structural differences of glycans could be distinguished.
Collapse
|
6
|
Minamiki T, Ichikawa Y, Kurita R. Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15903-15910. [PMID: 32134238 DOI: 10.1021/acsami.0c00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring new strategies for simple and on-demand methods of manipulating the sensing ability of sensor devices functionalized with artificial receptors embedded in a molecular assembly is important to realizing high-throughput on-site sensing systems based on integrated and miniaturized devices such as field-effect transistors (FETs). Although FET-based chemical sensors can be used for rapid, quantitative, and simultaneous determination of various desired analytes, detectable targets in conventional FET sensors are currently restricted owing to the complicated processes used to prepare sensing materials. In this study, we investigated the relationship between the sensing features of FETs and the nanostructures of mixed self-assembled monolayers (mSAMs) for the detection of biomolecules. The FET devices were systematically functionalized using mixtures of benzenethiol derivatives (4-mercaptobenzoic acid and benzenethiol), which changed the nanostructure of the SAMs formed on gold sensing electrodes. The obtained cross-reactivity in the FETs modified with the mSAMs was derived from the multidimensional variations of the SAM characteristics. Our successful demonstration of continuous control of the molecular recognition ability in the FETs by applying the mSAM system could lead to the development of next-generation versatile analyzers, including chemical sensor arrays for the determination of multiple analytes anytime, anywhere.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Ichikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|