1
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Khan MA, Stojanović GM, Hassan R, Anand TJS, Al-Ejji M, Hasan A. Role of Graphene Oxide in Bacterial Cellulose-Gelatin Hydrogels for Wound Dressing Applications. ACS OMEGA 2023; 8:15909-15919. [PMID: 37179612 PMCID: PMC10173314 DOI: 10.1021/acsomega.2c07279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/01/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based hydrogels have several advantages, including robust mechanical tunability, high biocompatibility, and excellent optical properties. These hydrogels can be ideal wound dressing materials and advantageous to repair and regenerate skin wounds. In this work, we prepared composite hydrogels by blending gelatin and graphene oxide-functionalized bacterial cellulose (GO-f-BC) with tetraethyl orthosilicate (TEOS). The hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscope (AFM), and water contact angle analyses to explore functional groups and their interactions, surface morphology, and wetting behavior, respectively. The swelling, biodegradation, and water retention were tested to respond to the biofluid. Maximum swelling was exhibited by GBG-1 (0.01 mg GO amount) in all media (aqueous = 1902.83%, PBS = 1546.63%, and electrolyte = 1367.32%). All hydrogels were hemocompatible, as their hemolysis was less than 0.5%, and blood coagulation time decreased as the hydrogel concentration and GO amount increased under in vitro standard conditions. These hydrogels exhibited unusual antimicrobial activities against Gram-positive and Gram-negative bacterial strains. The cell viability and proliferation were increased with an increased GO amount, and maximum values were found for GBG-4 (0.04 mg GO amount) against fibroblast (3T3) cell lines. The mature and well-adhered cell morphology of 3T3 cells was found for all hydrogel samples. Based on all findings, these hydrogels would be a potential wound dressing skin material for wound healing applications.
Collapse
Affiliation(s)
- Muhammad
Umar Aslam Khan
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Goran M. Stojanović
- Faculty
of Technical Sciences, University of Novi
Sad, T. Dositeja Obradovi’ca 6, 21000 Novi Sad, Serbia
| | - Rozita Hassan
- Orthodontic
Unit, School of Dental Science, Universiti
Sains Malaysia, Kubang
Kerian, Kelantan 16150, Malaysia
| | - T. Joseph Sahaya Anand
- Sustainable
and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing
Engineering Technology, Universiti Teknikal
Malaysia Melaka, Hang Tuah Jaya, Melaka 76100, Malacca, Malaysia
| | - Maryam Al-Ejji
- Center for
Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Anwarul Hasan
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Wang J, Wloch G, Lin T, Chen Z. Investigating Thin Silicone Oil Films Using Four-Wave Mixing Spectroscopy and Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14540-14549. [PMID: 34843652 DOI: 10.1021/acs.langmuir.1c02737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article applies four-wave mixing (FWM) spectroscopy, a third-order nonlinear optical spectroscopic technique which is not intrinsically surface- or interface-sensitive, to study silicone oil thin films, supplemented by second-order nonlinear-optical sum frequency generation (SFG) vibrational spectroscopy. Although studies of thin organic films using coherent antistokes Raman spectroscopy (CARS), a special case of FWM, have been reported previously, in this study we demonstrate the feasibility of using a more general FWM process which involves three independent excitation laser beams to investigate silicone oil thin films. The results show that the FWM method has the potential to detect and provide molecular-level information on ultrathin silicone oil layers, down to a film thickness of 1 nm. This developed FWM methodology is widely applicable and can be utilized to study important issues in the biopharmaceutical field, e.g., to examine the distribution of silicone oil on syringe glass surfaces with subnanometer sensitivity. It can also be used to study the potentially slow reactions between silicone oil and glass surfaces as proposed in the literature but without direct molecular-level information.
Collapse
Affiliation(s)
- Jie Wang
- Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gene Wloch
- Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | | |
Collapse
|
4
|
Ou C, Wang C, Giasson S. Enhanced swelling using photothermal responsive
surface‐immobilized
microgels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Charly Ou
- Department of Chemistry Université de Montréal Montreal Quebec Canada
| | - Chang‐Sheng Wang
- Department of Chemistry Université de Montréal Montreal Quebec Canada
| | - Suzanne Giasson
- Department of Chemistry Université de Montréal Montreal Quebec Canada
- Faculty of Pharmacy Université de Montréal Montreal Quebec Canada
| |
Collapse
|
5
|
Guerron A, Giasson S. Multiresponsive Microgels: Toward an Independent Tuning of Swelling and Surface Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11212-11221. [PMID: 34523940 DOI: 10.1021/acs.langmuir.1c01269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dual-responsive poly-(N-isopropylacrylamide) (PNIPAM) microgels surface-functionalized with polyethylene glycol (PEG) or poly-2-dimethylaminoethyl methacrylate (PDMAEMA) were developed to enable the swelling behavior and surface properties of the microgels to be tuned independently. The thermo-triggered swelling and pH-triggered surface properties of the microgels were investigated in aqueous suspensions using dynamic light scattering and on substrates using the surface forces apparatus. Grafting polymer chains on the microgel surface did not impede the thermo-triggered swelling behavior of the microgels in suspensions and immobilized on substrates. An unprecedented decoupling of the swelling behavior and surface properties could be obtained. More particularly, the thermo-triggered swelling behavior of the PNIPAM underlying microstructure could be tuned below and above the phase transition temperature with no change in the surface potential and adhesion provided by the surface non-responsive PEG.
Collapse
Affiliation(s)
- Alberto Guerron
- Faculty of Pharmacy, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Suzanne Giasson
- Faculty of Pharmacy, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
6
|
Bauman L, Wen Q, Sameoto D, Yap CH, Zhao B. Durable poly(N-isopropylacrylamide) grafted PDMS micropillared surfaces for temperature-modulated wetting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Vialar P, Merzeau P, Giasson S, Drummond C. Compliant Surfaces under Shear: Elastohydrodynamic Lift Force. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15605-15613. [PMID: 31408351 DOI: 10.1021/acs.langmuir.9b02019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we have investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) cationic microgels. We have observed the emergence of velocity dependent, shear-induced normal forces, which can be large enough to entrain a fluid film that separates the surfaces out of contact, driving the dynamic system from conditions of boundary to hydrodynamic lubrication. By implementing a feedback-loop control on the surface separation, we were able to quantify the magnitude of the lift force as a function of the surface separation and driving speed. Our results illustrate how elastohydrodynamic effects can play an important role in the lubrication of compliant surfaces, providing pathways for control of friction and wear.
Collapse
Affiliation(s)
- Pierre Vialar
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031 , F-33600 Pessac , France
- Université Bordeaux, CRPP , F-33600 Pessac , France
| | - Pascal Merzeau
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031 , F-33600 Pessac , France
- Université Bordeaux, CRPP , F-33600 Pessac , France
| | - Suzanne Giasson
- Department of Chemistry and Faculty of Pharmacy , Université de Montréal , C.P. 6128, succursale Centre-Ville , Montréal , QC Canada , H3C 3J7
| | - Carlos Drummond
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031 , F-33600 Pessac , France
- Université Bordeaux, CRPP , F-33600 Pessac , France
| |
Collapse
|