1
|
Kim SG, Park SH, Jeong S, Song G, Oh SS, Yi GR. Scalable production of uniform gene-loaded lipid nanoparticles via a fluidity-controlled membrane extrusion. J Colloid Interface Sci 2025; 687:74-84. [PMID: 39946970 DOI: 10.1016/j.jcis.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/18/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
Lipid nanoparticles (LNPs) encapsulating genetic material can be produced on a large scale using the bulk-mixing method. However, this approach often lacks precise control over particle size and cargo loading, limiting its efficiency in gene delivery. We have developed a membrane extrusion process that enables large-scale production of LNPs with a narrow size distribution. Initially, an ethanolic lipid solution is mixed with an aqueous buffer containing nucleic acids, forming a pre-mix of swollen LNPs. These soft, swollen LNPs are then extruded through a polycarbonate filter membrane, producing uniform LNPs, in which the ethanol concentration and extrusion pH are adjusted for LNP fluidity. Subsequent addition of citrate buffer (pH 4) enhances encapsulation efficiency by reassembling the dissociated mRNA and lipids during the extrusion process. Finally, the LNP solution is adjusted to physiological pH through buffer exchange. Optimizing the extrusion parameters allowed us to achieve highly uniform 100 nm LNPs with over 80 % encapsulation efficiency for mRNA, siRNA, and DNA. This work provides valuable insights into LNP formation, highlights critical formulation parameters, and demonstrates the potential for large-scale, controlled LNP production.
Collapse
Affiliation(s)
- Su-Gyeom Kim
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Seong Hun Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Seolyeong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Geonho Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Seung Soo Oh
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Gi-Ra Yi
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea.
| |
Collapse
|
2
|
Adak A, Castelletto V, de Mello L, Mendes B, Barrett G, Seitsonen J, Hamley IW. Effect of Chirality and Amphiphilicity on the Antimicrobial Activity of Tripodal Lysine-Based Peptides. ACS APPLIED BIO MATERIALS 2025; 8:803-813. [PMID: 39792083 PMCID: PMC11752523 DOI: 10.1021/acsabm.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)3K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)3K, and heterochiral analogues containing k (d-Lys), (kkY)3K and Fmoc-(kkY)3K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM). In cell viability assays using fibroblast cell lines, the tripodal peptides without Fmoc were observed to be noncytotoxic over the concentration range studied, and the Fmoc functionalized tripodal peptides were only cytotoxic at the highest concentrations (above the critical aggregation concentration of the lipopeptides). The molecules also show good hemocompatibility at sufficiently low concentration, and antimicrobial activity was assessed via MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) assays. These revealed that the Fmoc-functionalized tripodal peptides had significant activity against both Gram-negative and Gram-positive bacteria, and in the case of Gram-positive Staphylococcus aureus, the antimicrobial activity for Fmoc-(kkY)3K was improved compared to polymyxin B. The mechanism of the antimicrobial assay was found to involve rupture of the bacterial membrane as evident from fluorescence microscopy live/dead cell assays, and scanning electron microscopy images.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Lucas de Mello
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
3
|
Adak A, Castelletto V, Mendes B, Barrett G, Seitsonen J, Hamley IW. Chirality and pH Influence the Self-Assembly of Antimicrobial Lipopeptides with Diverse Nanostructures. ACS APPLIED BIO MATERIALS 2024; 7:5553-5565. [PMID: 39042039 PMCID: PMC11337160 DOI: 10.1021/acsabm.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chirality plays a crucial role in the self-assembly of biomolecules in nature. Peptides show chirality-dependent conformation and self-assembly. Lipidation of peptides occurs in vivo and has recently been exploited in designed conjugates to drive self-assembly and enhance bioactivity. Here, a library of pH-responsive homochiral and heterochiral lipidated tripeptides has been designed. The designed lipopeptides comprise homochiral C16-YKK or C16-WKK (where all the amino acids are l-isomers), and two heterochiral conjugates C16-Ykk and C16-Wkk (where the two lysines are d-isomers). The self-assembly of all the synthesized lipopeptides in aqueous solution was examined using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Interestingly, it was observed that at acidic pH all the lipopeptides self-assemble into micelles, whereas at basic pH the homochiral lipopeptides self-assemble into nanofibers, whereas the heterochiral lipopeptides self-assemble into nanotapes and nanotubes. A pH switch was demonstrated using a thioflavin T fluorescence probe of β-sheet structure present in the extended structures at pH 8. We demonstrate that both chirality and pH in lipopeptides influence the self-assembly behavior of the model tripeptides, which also show promising bioactivity. Good cytocompatibility is observed in hemolytic assays and antimicrobial activity against both Gram-negative and Gram-positive bacteria is shown through the determination of minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values and live/dead bacteria staining assay.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
4
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
6
|
Wang D, Fan Z, Zhang X, Li H, Sun Y, Cao M, Wei G, Wang J. pH-Responsive Self-Assemblies from the Designed Folic Acid-Modified Peptide Drug for Dual-Targeting Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:339-347. [PMID: 33356306 DOI: 10.1021/acs.langmuir.0c02930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeting delivery is a promising technique for the therapy of cancers. A molecule FA-EEYSV-NH2, which consists of target recognition site folic acid (FA), dipeptide linker, and peptide drug, was designed as a novel anticancer prodrug. The molecules could self-assemble into nanoparticles at pH 7.0 and nanofibers at pH 5.0. By the aid of pH-responsiveness, the self-assemblies were used purposefully as targeted vehicles of self-delivery prodrugs. The results of cell toxicity and internalization assays have proved that the self-assemblies have good cancer cell selectivity. The selection was mainly attributed to the pH-responsive structure transition of self-assemblies and the FA active-targeting effect. We hope that our work could provide a useful strategy for finely tuning the properties and activities of peptide-based supramolecular nanomaterials, thus optimizing nanomedicines with enhanced performance.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhihao Fan
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xuecheng Zhang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hui Li
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, Yantai 256603, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
7
|
Wang D, Ma B, Wang Z, Zhao Y, Sun Y, Luan Y, Wang J. Preparation and characterization of β-casein stabilized lipopeptide lyotropic liquid crystal nanoparticles for delivery of doxorubicin. SOFT MATTER 2019; 15:9011-9017. [PMID: 31687734 DOI: 10.1039/c9sm01931f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A kind of lyotropic liquid crystal nanoparticle (LLC NPs) has been designed and prepared. LLC NPs are dSMO/OA/β-casein/water quaternary systems, and their cubic or hexagonal microstructures have been characterized by cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). The phase transition of LLC NPs takes place with ratio and pH adjustments. The properties, such as cytotoxicity, stability, drug encapsulation and release ability, have been investigated with MTT assay, cryo-TEM and UV-Vis spectroscopy. The results showed that LLC NPs were nontoxic to cells and stable to enzymatic degradation. Hydrophilic drug doxorubicin hydrochloride (DOX·HCl) could be effectively encapsulated in LLC NPs and its release rate could be regulated by pH. It was concluded that LLC NPs are potential nanocarriers in nanomedicine technologies. We hope that this work provides new guidelines for the rational design of LLC NP systems with lipopeptides for biomedical applications.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Bente Ma
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Zhaoyu Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|