1
|
Kuldeep, Jena SR, Samanta L, Subuddhi U. Anthracene-Conjugated Steroidal Amphiphiles: Soft Functional Materials Exhibiting Supramolecular Aggregation Induced Enhanced Emission with Potential Applications as Drug Carriers and Fluorescent Bioprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1157-1174. [PMID: 39745081 DOI: 10.1021/acs.langmuir.4c04502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties. In an aqueous medium, the FBAs showed a strong supramolecular aggregation propensity, even in the micromolar concentration range, which is in contrast to their BS analogues that form micelles mostly in the millimolar range. The FBA aggregation leads to a prearranged geometry in the ground state with a favorable orientation of anthracene units for excimer formation on excitation, leading to supramolecular aggregation-induced enhanced emission (AIEE). A detailed investigation reveals the pivotal role of the steroidal skeleton in their aggregation propensity and optical behavior. The FBA assemblies, with ordered structures plus anthracene being a part of their building blocks, are endowed with interesting properties different from those in dilute organic media, which makes them extremely attractive for diverse applications, e.g., as potential drug carriers owing to their ability to serve as efficient hosts for the protective encapsulation of hydrophobic guests; as membrane probes and bioimaging agents due to their efficient membrane permeability and cell-imaging ability; and as system probes because of their remarkable sensitivity toward the aggregation process of natural bile salts in the aqueous medium. Therefore, the present study not only enhances the fundamental understanding of this unique class of amphiphiles but also opens new prospects in tailoring novel self-assembled soft functional materials. Moreover, it offers a benchmark for developing BS-based fluorescent derivatives with unique photophysical characteristics for applications as potential bioprobes.
Collapse
Affiliation(s)
- Kuldeep
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumya Ranjan Jena
- Department of Zoology, Ravenshaw University, Cuttack, Odisha 753003, India
| | - Luna Samanta
- Department of Zoology, Ravenshaw University, Cuttack, Odisha 753003, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
2
|
Ramírez-Lozano CM, Ochoa ME, Labra-Vázquez P, Jiménez-Sánchez A, Farfán N, Santillan R. Exploring the self-assembly dynamics of novel steroid-coumarin conjugates: a comprehensive spectroscopic and solid-state investigation. Org Biomol Chem 2024; 22:3314-3327. [PMID: 38578064 DOI: 10.1039/d4ob00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The design, synthesis, and characterization of seven novel steroid-coumarin conjugates with diverse steroidal nuclei as lipophilic fluorescent materials for bioimaging applications are presented. The conjugates were synthesized through amidation, characterized using spectroscopic and spectrometric methods, and their main photophysical properties were determined. Dioxane : water titration experiments revealed their ability to self-assemble, forming J-aggregates as evidenced by new spectral bands at higher wavelengths. Monocrystal X-ray diffraction analysis disclosed distinctive aggregation patterns exhibiting J- or H-aggregates for selected compounds. Bioimaging studies demonstrated cell membrane localization for most conjugates, with some of them displaying an interesting selectivity for lipid droplets. Notably, the presence of the steroid fragments significantly influenced both the self-assembly patterns and the cellular localization of the fluorescent probes.
Collapse
Affiliation(s)
- Claudia M Ramírez-Lozano
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico.
| | - Ma Eugenia Ochoa
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico.
| | - Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico.
| |
Collapse
|
3
|
Rovnyak D, He J, Kong S, Eckenroad KW, Manley GA, Geffert RM, Krout MR, Strein TG. Determining sequential micellization steps of bile salts with multi-CMC modeling. J Colloid Interface Sci 2023; 644:496-508. [PMID: 37146486 DOI: 10.1016/j.jcis.2023.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023]
Abstract
HYPOTHESIS Bile salts exhibit complex concentration-dependent micellization in aqueous solution, rooted in a long-standing hypothesis of increasing size in bile aggregation that has historically focused on the measurement of only one CMC detected by a given method, without resolving successive stepwise aggregates. Whether bile aggregation is continuous or discrete, at what concentration does the first aggregate form, and how many aggregation steps occur, all remain as open questions. EXPERIMENTS Bile salt critical micelle concentrations (CMCs) were investigated with NMR chemical shift titrations and a multi-CMC phase separation modeling approach developed herein. The proposed strategy is to establish a correspondence of the phase separation and mass action models to treat the first CMC; subsequent micellization steps, involving larger micelles, are then treated as phase separation events. FINDINGS The NMR data and the proposed multi-CMC model reveal and resolve multiple closely spaced sequential preliminary, primary, and secondary discrete CMCs in dihydroxy and trihydroxy bile salt systems in basic (pH 12) solutions with a single model of one NMR data set. Complex NMR data are closely explained by the model. Four CMCs are established in deoxycholate below 100 mM (298 K, pH 12): 3.8 ± 0.5 mM, 9.1 ± 0.3 mM, 27 ± 2 mM, and 57 ± 4 mM, while three CMCs were observed in multiple bile systems, also under basic conditions. Global fitting leverages the sensitivity of different protons to different aggregation stages. In resolving these closely spaced CMCs, the method also obtains chemical shifts of these spectroscopically inaccessible (aka dark) states of the distinct micelles.
Collapse
Affiliation(s)
- David Rovnyak
- Dent Drive, Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA.
| | - Jiayi He
- University of Pennsylvania, Department of Chemistry, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA.
| | - Sophie Kong
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA.
| | - Kyle W Eckenroad
- Bristol Myers Squibb, 1 Squibb Drive, 92-218 New Brunswick, NJ 08901, USA.
| | - Gregory A Manley
- AB SCIEX LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Raeanne M Geffert
- The University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Kerr Hall, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| | - Michael R Krout
- Dent Drive, Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA.
| | - Timothy G Strein
- Dent Drive, Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
4
|
Kong J, Li M, Chen Y, Li Y, Liu M, Zhang Q, Xuan H, Liu J. Hydrophobic interaction of four bile salts with hemoglobin induces unfolding of protein and evades protein degeneration induced by urea. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Mohanty S, Tirkey B, Jena SR, Samanta L, Subuddhi U. Exploring Steroidal Surfactants as Potential Drug Carriers for an Anticancer Drug Curcumin: An Insight into the Effect of Surfactants' Structure on the Photophysical Properties, Stability, and Activity of Curcumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1852-1869. [PMID: 36691916 DOI: 10.1021/acs.langmuir.2c02797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite having tremendous medicinal benefits, the practical applications of curcumin are limited, owing to two major challenges: poor aqueous solubility and lack of bioavailability. In this regard, biosurfactant-based micellar systems have surged recently for the development of novel and more effective formulations because of their biological relevance. This study deals with a comprehensive and comparative investigation on the effect of seven structurally different steroidal surfactants on the photophysical properties of curcumin and also evaluates these steroidal surfactants as possible drug delivery media for curcumin. The photophysical properties of curcumin exhibited a strong dependence on the structure of the steroidal surfactant; the extent of excited-state proton transfer between curcumin and the surfactants depends strongly on the type of the side chain in the surfactants, which mostly dictates the photophysics of curcumin in the presence of these structural variants. The solubility of curcumin and its stability at different pHs and temperatures and in the presence of salt are significantly enhanced in the presence of these surfactants. Furthermore, the curcumin-loaded micelles exhibited improved intracellular uptake and cytotoxicity against MCF-7 cancer cells than pristine curcumin. Among these steroidal surfactants, CHAPS, the zwitterionic derivative of cholic acid, was the most efficient one to offer better solubility and stability to curcumin under all conditions, and the death rate of MCF-7 cells by curcumin was found to be the highest in the presence of CHAPS, indicating the enhanced bioavailability of curcumin. Therefore, CHAPS-based colloids are found to be promising candidates as potential drug carriers for curcumin.
Collapse
Affiliation(s)
- Subhrajit Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| | - Binita Tirkey
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| | - Soumya Ranjan Jena
- Department of Zoology, Ravenshaw University, Cuttack, Odisha753003, India
| | - Luna Samanta
- Department of Zoology, Ravenshaw University, Cuttack, Odisha753003, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| |
Collapse
|
6
|
Pattnayak S, Sahoo U, Choudhury S, Hota G. Silver nanoparticles embedded sulfur doped graphitic carbon nitride quantum dots: A fluorescent nanosensor for detection of mercury ions in aqueous media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Oxidation of sodium cholate catalyzed by Au NPs and chiral selective binding of R- and S-binaphthyl derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Interfacial behavior and emulsion stability of lipid delivery system regulated by two-dimensional facial amphiphiles bile salts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Dhenadhayalan N, Veeranepolian Selvi AS, Chellappan S, Thiagarajan V. Synergistic dynamics of photoionization and photoinduced electron transfer probed by laser flash photolysis and ultrafast fluorescence spectroscopy. Photochem Photobiol Sci 2021; 20:1109-1124. [PMID: 34427902 DOI: 10.1007/s43630-021-00084-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Photoionization (PI) and photoinduced electron transfer (PET) dynamics of coumarin 450 (C450) in micelles were investigated in the time domains of micro to femtoseconds using steady-state and time-resolved absorption and fluorescence spectroscopy. The PI of C450 occurs inside the micelles leads to the formation of C450 cation radical (CR) and hydrated electron, which is characterized by the respective transient absorption. The PI of C450 is monophotonic in nature and the yield is dependent on the charge of the micelles. The observation of amine CR in the transient absorption confirms the PET from amine to the excited state of C450 in micelles, which results in the quenching of both fluorescence intensity and lifetime. The decrease in femtosecond fluorescent decay of C450 and the absence of transient C450 radical anion in the presence of amine implies that the concerted ultrafast PET promoted PI and PET to the C450 CR-electron pair. The decrease in the time constant for the formation of relaxed state in the presence of amines is due to the ultrafast PET to the C450 CR-electron pair, which prevents the formation of a relaxed state through recombination at a longer time scale. In the present investigation, the recombination dynamics of the CR-electron pair is justified as one of the origins of the slow solvation in micelles. The influence of amine concentration on the decay of C450 CR indicates ET reaction between C450 CR and amine, which is further confirmed by the bleach recovery of C450 ground state in the presence of amine.
Collapse
Affiliation(s)
| | | | - Selvaraju Chellappan
- National Centre for Ultrafast Processes, University of Madras, Chennai, 600 113, India.
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India. .,Faculty Recharge Programme, University Grants Commission, New Delhi, India.
| |
Collapse
|
10
|
Unravelling the aggregation behaviour and micellar properties of CHAPS (3-[(3-cholamidopropyl)-dimethylamino]-1-propanesulfonate), a zwitterionic derivative of cholic acid, using Coumarin 1 photophysics. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Sharma P, Sohal N, Maity B. Encapsulation and release of non-fluorescent crystal violet confined in bile-salt aggregates. RSC Adv 2021; 11:10912-10921. [PMID: 35423564 PMCID: PMC8695816 DOI: 10.1039/d0ra06599d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, the entrapment of non-fluorescent dye Crystal Violet (CV) in presence of bio-mimetic confined bile-salt aggregates has been studied. The photophysical characteristic properties of CV have been carried out by changing different kinds of hydrophilic head groups and hydrophobic skeletons of bile-salt aggregates (NaC, NaDC, NaTC and NaTGC). The main aim of this work is to modulate the solubility behaviour, fluorescence properties and elucidation of different kinds of non-covalent interaction of CV confined in bile-salt aggregates. To interpret the result, steady state absorption and fluorescence emission techniques have been employed. In aqueous buffer, the CV molecule is non-fluorescent in nature. The value of fluorescence quantum yield (Φ) is ∼10−4. It has been observed that CV confined in bile-salt aggregates becomes highly fluorescent in nature. The enhancement of ‘Φ’ value of CV in bile-salt aggregates is ∼1000 fold compared to that of aqueous buffer medium. It has also been observed that in the presence of different bile-salt aggregates, CV exhibits remarkable enhancement of absorption and fluorescence emission spectral behaviour. The ground state and the excited state binding constant values of CV in the presence of different bile-salt aggregates have been determined. Moreover, the release of the dye molecule from the confined bile-salt aggregates to the aqueous medium has been executed. It has been found that addition of a very minute concentration of KCl salt (100 nm) to the bile-salt aggregates leads to extreme modification of their photophysical properties of CV. The absorption, fluorescence intensity, fluorescence quantum yield, ground state and excited state binding constant values, partition coefficient and aggregation number of CV molecules entrapped in bile-salt aggregates significantly reduces by addition of KCl. This result clearly confirms that CV releases from the confined system to the aqueous medium. In this work, the entrapment of non-fluorescent dye Crystal Violet (CV) in presence of bio-mimetic confined bile-salt aggregates has been studied.![]()
Collapse
Affiliation(s)
- Prachi Sharma
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala 147004
- India
| | - Neeraj Sohal
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala 147004
- India
| | - Banibrata Maity
- School of Chemistry and Biochemistry
- Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| |
Collapse
|