1
|
Huang D, Lei J, Zhang N, Huang X, Wu S, Schiffbauer JE, Yue Y. Tunable Photothermal Bubble Formation in Binary Liquids under Pulsed Laser Excitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6268-6276. [PMID: 40016096 DOI: 10.1021/acs.langmuir.4c05379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Photothermal microbubbles triggered by pulsed laser heating are critical for diverse applications spanning microfluidics, medical technologies, and materials engineering. Yet controlling their prolonged growth remains challenging due to the intricate interplay between liquid phase transition, dissolved gas diffusion, and convective heat transfer. Here, we systematically examine microbubble expansion in an ethanol-butanol solution by tuning the boiling point and viscosity. Through the variation of the boiling point and viscosity of the binary solution (ethanol/butanol), it was found that the liquid phase transition, dissolved gas diffusion, and convective heat exchange dominated the different growth stages of the micrometer bubbles, respectively. The rapid expansion phase is predominantly influenced by the liquid phase; however, the boiling point plays a crucial role in determining the transition rate between the two phases. A higher boiling point accelerates the transition from rapid expansion to slow diffusion phases, and the viscosity significantly affects the growth rate of bubbles during the slow diffusion phase. In high-viscosity solutions, bubble growth in this phase is influenced by a combination of dissolved gas diffusion and convective cooling of the liquid. Prior studies have concentrated on the immediate bubble growth triggered by pulsed lasers; the outcomes of this study offer insights into forecasting and tuning the evolution of photothermal bubbles.
Collapse
Affiliation(s)
- Dezhao Huang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiajie Lei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Nan Zhang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaona Huang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Shijing Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Jarrod E Schiffbauer
- Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Yanan Yue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056, United States
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Oaki Y, Fujii S. Cascading responses of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:9163-9176. [PMID: 39051149 DOI: 10.1039/d4cc02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Responsiveness to stimuli is important in daily life: natural biological activity is governed by continuous stimulus responsiveness. The design of stimuli-responsive materials is required for the development of advanced sensing systems. Although fully controlled stimuli-responsive systems have been constructed in nature, artificial systems remain a challenge. Conventional stimuli-responsive materials show direct responsiveness to an applied stimulus (Stimulus 1), with structural changes in their molecules and organized states. This feature article focuses on cascading responses as a new concept for integrating stimuli-responsive material design. In cascading responses, an original stimulus (Stimulus 1) is converted into other stimuli (Stimulus 2, 3, …, N) through successive conversions. Stimulus N provides the eventual output response. Integration of multiple stimuli-responsive materials is required to achieve cascading responses. Although cascade, domino, and tandem chemical reactions have been reported at the molecular level, they are not used for materials with higher organized structures. In this article, we introduce functional carriers and sensors based on cascading responses as model cases. The concept of cascading responses enables the achievement of transscale responsivity and sensitivity, which are not directly induced by the original stimulus or its responsive material, for the development of advanced dynamic functional materials.
Collapse
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
3
|
Wang T, Wang Z. Liquid-Repellent Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9073-9084. [PMID: 35857533 DOI: 10.1021/acs.langmuir.2c01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surfaces are vibrant sites for various activities with environments, especially as the transfer station for mass and energy exchange. In nature, natural creatures exhibit special wetting and interfacial properties such as water repellency and water affinity to adapt to various environmental challenges by taking advantage of air or liquid infusion media. Inspired by natural surfaces, various engineered liquid-repellent surfaces have been developed with a wide range of applications in both open and closed underwater environments. In particular, underwater conditions are characterized by high viscosity, high pressure, and complex compositions, which pose more challenges for the design of robust and functional repellent surfaces. In this Perspective, we take a parallel approach to introduce two classical liquid-repellent surfaces: an air-infused repellent surface and a lubricated liquid-repellent surface. Then we highlight fundamental challenges and design configurations of robust liquid-repellent surfaces both in air and underwater. We summarize the advantages and drawbacks of two kinds of repellent surfaces and list several applications of liquid-repellent surfaces for use in the ocean, medical care, and energy harvesting. Finally, we provide an outlook of research directions for robust liquid-repellent surfaces.
Collapse
|
4
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Bai X, Wang Y, Li H, Tian X, Ma Y, Pan J. Stalagmites in karst cave inspired construction: lotus root-type adsorbent with porous surface derived from CO 2-in-water Pickering emulsion for selective and ultrafast uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126398. [PMID: 34175700 DOI: 10.1016/j.jhazmat.2021.126398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous construction of porous and hollow adsorbent, especially from gas-in-water Pickering emulsion (PE) reactor, is vital for improving mass transfer kinetics and uptake amount. Inspired by the formation process of stalagmites in karst cave, amino and amidoxime bifunctionalized lotus root-type microsphere with porous surface (NH2@AO-PLRMS) is prepared by the silica nanoparticles (SPs)-stabilized CO2-in-water Pickering emulsion reactor and subsequent two-step grafting polymerization. The important roles of SPs acting as Pickering emulsifier, surface pore-forming agent, and adjusting internal lotus root structure are confirmed. Lotus root-type pores are dependent on the interface intensity and the permeability for compressed CO2 bubbles in PE droplets. Benefitting from the lotus root-type structure and abundant affinity sites, the maximum uranium adsorption capacity of NH2@AO-PLRMS is 1214.5 mg·g-1 at 298 k, and an ultrafast uptake process can be achieved in the first 30 min. Both thermodynamic and kinetic studies indicate a spontaneous, entropy increased, and exothermic chemisorption process, and the synergies of amidoxime and amino groups can enhance the adsorption selectivity. Remarkably, NH2@AO-PLRMS displays a high uranium adsorption capacity and desorption efficiency after seven cycles. These findings provide a way to obtain adsorbents with enhanced uranium extraction performance from gas-in-water PE reactor.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Kolobov A, Korshunova E, Kiverin A. Oscillating Motion of Oil Droplets in the Emulsion Near the Air-Water Interface. J Phys Chem B 2021; 125:10373-10382. [PMID: 34470210 DOI: 10.1021/acs.jpcb.1c06128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous living organisms as well as artificially created self-propelled objects can form dissipative structures due to the nonlinear effects and nonequilibrium of the system. Here we present an active oil-in-water emulsion in which the oil droplets take part in the reciprocating motion under the action of Marangoni flow near the air-water interface. The droplet dynamics in the emulsion is governed by the chemical reaction proceeding between quiescent copper particles and ammonia and by the convective mixing of a surfactant. We established that the reciprocating motion of droplets in the emulsion arises as a result of a periodic change in the Marangoni flow direction at the air-water interface. The feature of the considered system is that the reciprocating motion of droplets is realized only when the surface area fraction of droplets in the emulsion is close to the density of a two-dimensional colloid crystal. Oscillations degenerate under the reduction in surface area fraction to the critical value of ∼50% since the existence of oscillations in the emulsion requires a suppression of the surfactant convective mixing between the inner layers of liquid film and the air-water interface.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.,Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Korshunova
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia.,Bauman Moscow State Technical University, 105005 Moscow, Russia
| |
Collapse
|
7
|
Polypyrrole-coated Pickering-type droplet as light-responsive carrier of oily material. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kiverin A. Self-Organization of Active Droplets into Vortex-like Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9892-9900. [PMID: 34347492 DOI: 10.1021/acs.langmuir.1c01615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural or artificial active objects can demonstrate mirror asymmetry of collective motion when they are moving coherently in a vortex. The majority of known cases related to the emergence of collective dynamical chirality are referred to as active objects with individual structure chirality and/or dynamical chirality. Here, we demonstrate that dynamically and structurally achiral active droplets can self-organize into vortex-like structures. Octane droplets dispersed in the aqueous solution of an anionic surfactant are activated with ammonia addition. The motion of droplets is due to the Marangoni flow emerging at the interfaces of the droplets. We found out that different modes of vortex motion of droplets in the emulsion can arise depending on the size of the region that confines the motion of the droplets and their number density and velocity.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Moscow State Technical University by N.E. Bauman, 105005 Moscow, Russia
| |
Collapse
|
9
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Yakovenko I, Kiverin A. Crystallization of Active Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5691-5698. [PMID: 33929856 DOI: 10.1021/acs.langmuir.1c00630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active matter contains self-propelled units able to convert stored or ambient free energy into motion. Such systems demonstrate amazing features related to the phenomenon of self-organization and phase transitions and can be used for the development of artificial materials and machines that operate away from equilibrium. Significant advances in the fabrication of active matter were achieved when studying low-density gas and small crystallites. However, the technique of preparation of active matter, where one can observe the formation of stable crystals, is extremely challenging. Here, we describe the novel method to obtain a stable 2D crystal in the active octane-in-water emulsion during the process of heterogeneous crystallization. Active motion is driven by the Marangoni flow emerging at the interface of the droplet. It is established that the crystal volume increases linearly in time in the process of crystallization. Moreover, the dependence of the crystal growth rate on the average velocity of droplets motion in the emulsion has a maximum. The kinetics of crystal growth is defined by a competition between the processes of attachment and detachment of droplets from the crystal surface. Crystallization proceeds via condensation of droplets from the gas phase through the formation of liquid as an intermediate phase, which covers the crystal surface with a thin layer. Inside the liquid layer the bond-orientational order of droplets decreases from the crystal surface toward the gas phase. We anticipate our study to be a starting point for the development of new materials and technologies on the basis of nonequilibrium droplet systems.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan Yakovenko
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Alexey Kiverin
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| |
Collapse
|
10
|
Kretzschmar I, Santore MM. Preface to the Advances in Active Materials Special Issue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6859-6860. [PMID: 32600051 DOI: 10.1021/acs.langmuir.0c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
11
|
pH-Dependent Foam Formation Using Amphoteric Colloidal Polymer Particles. Polymers (Basel) 2020; 12:polym12030511. [PMID: 32120771 PMCID: PMC7182924 DOI: 10.3390/polym12030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 11/29/2022] Open
Abstract
Near-monodispersed micrometer-sized polystyrene (PS) particles carrying amidino and carboxyl groups on their surfaces were synthesized by soap-free emulsion polymerization using an amphoteric free radical initiator. The resulting amphoteric PS particles were characterized in terms of diameter, morphology, disperibility in aqueous media and surface charge using scanning electron microscopy (SEM), optical microscopy (OM), sedimentation rate and electrophoretic measurements. At pH 2.0, where the amidino groups are protonated (positively charged), and at pH 11.0, where the carboxyl groups are deprotonated (negatively charged), the PS particles were well dispersed in aqueous media via electrostatic repulsion. At pH 4.8, where the surface charges are neutral, the PS particles were weakly aggregated. Furthermore, it was confirmed that the PS particles can function as a pH-sensitive foam stabilizer: foamability and foam stability were higher at pH 2.0 and 4.8, where the PS particles can be adsorbed to the air–water interface, and lower at pH 11.0, where the PS particles tend to disperse in bulk aqueous medium. SEM and OM studies indicated that hexagonally close-packed arrays of PS particles were formed on the bubble surfaces and moiré patterns were observed on the dried foams. Moreover, the fragments of dried foams showed iridescent character under white light.
Collapse
|