1
|
Safi Samghabadi F, Ramezani Bajgiran S, Villegas Orellana M, Conrad JC, Marciel AB. Charge State of Weak Polyelectrolyte Brushes Determines Salt-Dependent Swelling and Hysteretic Behavior. ACS Macro Lett 2024; 13:1570-1576. [PMID: 39495622 DOI: 10.1021/acsmacrolett.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We investigate the combined effects of ionizable monomer fraction f, pH, and monovalent salt concentration Cs on the swelling of weak polyelectrolyte brushes (PEBs) by using in situ ellipsometry. Our system consists of random copolymers of basic (2-(dimethylamino)ethyl acrylate, DMAEA) and neutral (2-hydroxyethyl acrylate, HEA) monomers at varying fractions of ionizable monomer. Swelling of the brushes qualitatively follows the trends predicted by scaling laws for PEBs under different charge states but quantitatively deviates at specific ionic strengths and pH values. We posit these deviations stem from the lack of excluded volume effects and assumptions of strong chain stretching in current theoretical models. Most notably, we uncover a salt-dependent, nonmonotonic hysteretic behavior as weak PEB brushes are cycled from protonated to deprotonated and back. The nonmonotonic trend of hysteresis with salt can be explained by an interplay between the protonation facilitating effects of salt in the osmotic regime and the charge screening effects in the salted regime, which make charge distribution along weak PEBs more uniform. Our results provide insight into the mechanisms that determine whether polyelectrolytes exhibit weak versus strong polyelectrolyte behavior in various environmental conditions.
Collapse
Affiliation(s)
- Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Shahryar Ramezani Bajgiran
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Gresham IJ, Johnson EC, Robertson H, Willott JD, Webber GB, Wanless EJ, Nelson ARJ, Prescott SW. Comparing polymer-surfactant complexes to polyelectrolytes. J Colloid Interface Sci 2024; 655:262-272. [PMID: 37944374 DOI: 10.1016/j.jcis.2023.10.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS Understanding the complex interactions between polymers and surfactants is required to optimise commercially relevant systems such as paint, toothpaste and detergent. Neutral polymers complex with surfactants, forming 'pearl necklace' structures that are often conceptualised as pseudo-polyelectrolytes. Here we pose two questions to test the limits of this analogy: Firstly, in the presence of salt, do these polymer-surfactant systems behave like polyelectrolytes? Secondly, do polymer-surfactant complexes resist geometric confinement like polyelectrolytes? EXPERIMENTS We test the limits of the pseudo-polyelectrolyte analogy through studying a poly(N-isopropylacrylamide) (PNIPAM) brush in the presence of sodium dodecylsulfate (SDS). Brushes are ideal for interrogating pseudo-polyelectrolytes, as neutral and polyelectrolyte brushes exhibit distinct and well understood behaviours. Spectroscopic ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and neutron reflectometry (NR) were used to monitor the behaviour and structure of the PNIPAM-SDS system as a function of NaCl concentration. The ability of the PNIPAM-SDS complex to resist geometric confinement was probed with NR. FINDINGS At a fixed SDS concentration below the zero-salt CMC, increasing NaCl concentration <100 mM promoted brush swelling due to an increase in osmotic pressure, not dissimilar to a weak polyelectrolyte. At these salt concentrations, the swelling of the brush could be described by a single parameter: the effective CMC. However, at high NaCl concentrations (e.g., 500 mM) no brush collapse was observed at all (non-zero) concentrations of SDS studied, contrary to what is seen for many polyelectrolytes. Study of the polymer-surfactant system under confinement revealed that the physical volume of surfactant dominates the structure of the strongly confined system, which further differentiates it from the polyelectrolyte case.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Edwin C Johnson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | | | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, NSW, Australia.
| |
Collapse
|
3
|
Takagi K, Sagawa T, Hashizume M. The pH responsiveness of fluorescein loaded in polysaccharide composite films. SOFT MATTER 2023; 19:8945-8953. [PMID: 37909071 DOI: 10.1039/d3sm01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Stimuli-responsive materials have been used in biomedical applications. Composite films fabricated using polyion complexes comprising anionic and cationic polysaccharides exhibited loading and release abilities for water-soluble molecules, the release ability of which depended on the solution pH. However, the interactions between polysaccharides and loaded molecules in the film have not been evaluated. In this study, polysaccharide composite films loaded with fluorescein (FL) as a probe molecule were fabricated and the film properties, FL ionization, and release behaviour of FL were investigated. FL loading did not significantly affect the mechanical and morphological properties of the films. The release behaviour of FL was determined by the pH of the solution as well as the electrostatic interaction between polysaccharides and FL ionic structures in FL-loaded films. Furthermore, the ionic structure change of FL that remained in the film was suppressed due to interactions with polysaccharides, such as through hydrogen bonding. Additionally, the pH responsiveness of FL in the film in the dried state was evaluated. The result shows that polysaccharide composite films were swollen because of air moisture and that the diffusion of molecules inside the film accelerated. These findings are useful to understand the properties of the loaded molecules such as ionic state and diffusiveness in the films made of polyion complexes.
Collapse
Affiliation(s)
- Konatsu Takagi
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Takuya Sagawa
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mineo Hashizume
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
4
|
Hegaard F, Thormann E. Influence of Ionic Strength and Specific Ion Effects on Polyelectrolyte Multilayer Films with pH-Responsive Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5012-5020. [PMID: 37000604 DOI: 10.1021/acs.langmuir.2c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Layer-by-layer assembled multilayer films have shown great potential for different applications owing to their responsive behavior. Herein, we systematically investigated the effects of composition, salt concentration, and ion specificity on the pH responsiveness of covalently crosslinked chitosan and alginate dialdehyde multilayer films. The changes in film swelling were measured using ellipsometry from low (0.01 mM) to high (3 M) salt (NaCl or NaSCN) concentrations at pH 3, 6, and 9. The swelling responses to increasing ionic strength matched the swelling responses observed for polyzwitterionic and weak monocomponent polyelectrolyte films and depended on the multilayer composition, pH, and ion specificity. Finally, we used the ellipsometric data to demonstrate that the pH responsiveness of such multilayer films, as measured using a quartz crystal microbalance with dissipation monitoring, strongly depends on the ionic condition under which the responses were measured. We thus show that erroneous conclusions about the pH responsiveness of polyelectrolyte multilayer films can be easily obtained if the ionic environment of the application does not closely resemble the ionic condition under which the pH responsiveness is tested.
Collapse
Affiliation(s)
- Frederik Hegaard
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Robertson H, Willott JD, Gregory KP, Johnson EC, Gresham IJ, Nelson ARJ, Craig VSJ, Prescott SW, Chapman R, Webber GB, Wanless EJ. From Hofmeister to hydrotrope: Effect of anion hydrocarbon chain length on a polymer brush. J Colloid Interface Sci 2023; 634:983-994. [PMID: 36571860 DOI: 10.1016/j.jcis.2022.12.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kasimir P Gregory
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Edwin C Johnson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Chemistry, The University of Sheffield, Sheffield, UK
| | - Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Robert Chapman
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Al-Amodi A, Hill RJ. Streaming Potentials of Hyaluronic Acid Hydrogel Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13370-13381. [PMID: 36279307 DOI: 10.1021/acs.langmuir.2c01495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The streaming potentials of hyaluronic acid (HA) hydrogel films are measured and theoretically interpreted by systematically varying the HA concentration and the streaming electrolyte pH and ionic strength. While Donnan potentials are expected to vanish with sufficient added salt, apparent ζ-potentials from the Helmholtz-Smoluchowski interpretation remain of the order -20 mV. To theoretically interpret these data, we derived an electrokinetic model (valid in the Debye-Hückel regime) that accounts for ionic and hydrodynamic permeability of the gels. The films could then be ascribed an effective acid dissociation constant pKa ≈ 4.2, specific HA charge ≈-0.1e mmol g-1, and Brinkman/hydrodynamic permeability l2 ∼ l02S1/3, where l0 is the Brinkman length for HA solutions in the as-prepared reference state and S is the hydrogel swelling ratio. At an ionic strength of 10 mmol L-1, for example, the HA surface potentials are only ψD/2 ≈ -8 mV, where ψD is the Donnan potential, considerably lower than ζ-potentials furnished by the Helmholtz-Smoluchowski interpretation. This insight significantly changes how the films are expected to interact with other surfaces and colloids via Derjaguin-Landau-Vervey-Overbeek-type forces. Our analysis furnishes formulas for the swelling ratio S and hydrodynamic permeability l2, expressed explicitly as simple power-law functions of the as-prepared HA concentration cha (wt %), consistent with independent assessments of the HA solution permeability and polyelectrolyte-hydrogel swelling theory. These may prove valuable for extrapolating the results to other combinations of ionic strength, pH, and HA and cross-linking concentrations.
Collapse
Affiliation(s)
- Adel Al-Amodi
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
7
|
Gresham IJ, Willott JD, Johnson EC, Li P, Webber GB, Wanless EJ, Nelson AR, Prescott SW. Effect of surfactants on the thermoresponse of PNIPAM investigated in the brush geometry. J Colloid Interface Sci 2022; 631:260-271. [DOI: 10.1016/j.jcis.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
8
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
9
|
Pan Y, Gresham I, Bournival G, Prescott S, Ata S. Synergistic effects of frothers, collector and salt on bubble stability. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Gallegos A, Ong GMC, Wu J. Ising density functional theory for weak polyelectrolytes with strong coupling of ionization and intrachain correlations. J Chem Phys 2021; 155:241102. [PMID: 34972389 DOI: 10.1063/5.0066774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a theoretical framework for weak polyelectrolytes by combining the polymer density functional theory with the Ising model for charge regulation. The so-called Ising density functional theory provides an accurate description of the effects of polymer conformation on the ionization of individual segments and is able to account for both the intra- and interchain correlations due to the excluded-volume effects, chain connectivity, and electrostatic interactions. Theoretical predictions of the titration behavior and microscopic structure of ionizable polymers are found to be in excellent agreement with the experiment.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
11
|
Mella M, Tagliabue A, Vaghi S, Izzo L. Evidences for charged hydrogen bonds on surfaces bearing weakly basic pendants: The case of PMMA–ran–PDMAEMA polymeric films. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ehtiati K, Z. Moghaddam S, Daugaard AE, Thormann E. Crucial Nonelectrostatic Effects on Polyelectrolyte Brush Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Saeed Z. Moghaddam
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anders E. Daugaard
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
13
|
Trachsel L, Ramakrishna SN, Romio M, Spencer ND, Benetti EM. Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Lett 2021; 10:90-97. [PMID: 35548981 DOI: 10.1021/acsmacrolett.0c00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymer composition and topology of surface-grafted polyacids determine the amplitude of their pH-induced swelling transition. The intrinsic steric constraints characterizing cyclic poly(2-carboxypropyl-2-oxazoline) (c-PCPOXA) and poly(2-carboxyethyl-2-oxazoline) (c-PCEOXA) forming brushes on Au surfaces induce an enhancement in repulsive interactions between charged polymer segments upon deprotonation, leading to an amplified expansion and a significant increment in swelling with respect to their linear analogues of similar molar mass. On the other hand, it is the composition of polyacid grafts that governs their hydration in both undissociated and ionized forms, determining the degree of swelling during their pH-induced transition.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
14
|
Johnson EC, Willott JD, Gresham IJ, Murdoch TJ, Humphreys BA, Prescott SW, Nelson A, de Vos WM, Webber GB, Wanless EJ. Enrichment of Charged Monomers Explains Non-monotonic Polymer Volume Fraction Profiles of Multi-stimulus Responsive Copolymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12460-12472. [PMID: 33105998 DOI: 10.1021/acs.langmuir.0c01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-stimulus responsive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate) [P(MEO2MA-co-DEA)] 80:20 mol % copolymer brushes were synthesized on planar silica substrates via surface-initiated activators continuously regenerated via electron transfer atom transfer radical polymerization. Brush thickness was sensitive to changes in pH and temperature as monitored with ellipsometry. At low pH, the brush is charged and swollen, while at high pH, the brush is uncharged and more collapsed. Clear thermoresponsive behavior is also observed with the brush more swollen at low temperatures compared to high temperatures at both high and low pH. Neutron reflectometry was used to determine the polymer volume fraction profiles (VFPs) at various pH values and temperatures. A region of lower polymer content, or a depletion region, near the substrate is present in all of the experimental polymer VFPs, and it is more pronounced at low pH (high charge) and less so at high pH (low charge). Polymer VFPs calculated through numerical self-consistent field theory suggest that enrichment of DEA monomers near the substrate results in the experimentally observed non-monotonic VFPs. Adsorption of DEA monomers to the substrate prior to initiation of polymerization could give rise to DEA segment-enriched region proximal to the substrate.
Collapse
Affiliation(s)
- Edwin C Johnson
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Joshua D Willott
- Membrane Surface Science (MSuS), Membrane Science and Technology cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Timothy J Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Nelson
- ANSTO, Locked bag 2001, Kirrawee DC, Sydney, New South Wales 2232, Australia
| | - Wiebe M de Vos
- Membrane Surface Science (MSuS), Membrane Science and Technology cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
15
|
Senechal V, Saadaoui H, Vargas-Alfredo N, Rodriguez-Hernandez J, Drummond C. Weak polyelectrolyte brushes: re-entrant swelling and self-organization. SOFT MATTER 2020; 16:7727-7738. [PMID: 32735003 DOI: 10.1039/d0sm00810a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have studied the combined influence of pH and ionic strength on the properties of brushes of a weak polyion, poly(acrylic acid), in conditions of grafting density close to the mushroom-brush crossover. By combining atomic force microscopy AFM and quartz crystal microbalance, we show that at low ionic strengths the conformational change of grafted polyions is non-monotonic with increasing pH due to the counterintuitive variation of the ionization degree. Thus, reentrant swelling of the polymer chains is observed with increasing pH. This effect is more important at low polymer grafting densities, when it is accompanied by in-plane heterogeneous distribution at intermediate pH values. In addition, we observed self-assembly on the polymer brush (formation of holes and islands) at pH values below pKa, due to the short-range attractive interaction between uncharged grafted chains. The sensitivity of the ionization of grafted chains to the physicochemical environment was also studied by measuring the interaction force between a silica tip and polymer brushes by atomic force microscopy. The dependence of the ionization of polyions on the presence of the tip points toward important charge regulation effects, in particular at pH values corresponding to partial ionization of the polyion.
Collapse
Affiliation(s)
- Vincent Senechal
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031, F-33600 Pessac, France. and Université de Bordeaux, Centre de Recherche Paul Pascal, F-33600 Pessac, France
| | - Hassan Saadaoui
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031, F-33600 Pessac, France. and Université de Bordeaux, Centre de Recherche Paul Pascal, F-33600 Pessac, France
| | - Nelson Vargas-Alfredo
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Carlos Drummond
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031, F-33600 Pessac, France. and Université de Bordeaux, Centre de Recherche Paul Pascal, F-33600 Pessac, France
| |
Collapse
|
16
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|