1
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025; 19:18003-18036. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
3
|
Blahnik J, Krickl S, Schmid K, Müller E, Lupton J, Kunz W. Microemulsion and microsuspension polymerization of methyl methacrylate in surfactant-free microemulsions (SFME). J Colloid Interface Sci 2023; 648:755-767. [PMID: 37321095 DOI: 10.1016/j.jcis.2023.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
HYPOTHESIS This article presents a free-radical polymerization method in a mesostructured system - free of any surfactants, protective colloids, or other auxiliary agents. It is applicable for a large variety of industrially relevant vinylic monomers. The aim of this work is to study the impact of surfactant-free mesostructuring on the polymerization kinetics and the polymer derived. EXPERIMENTS So-called surfactant-free microemulsions (SFME) were investigated as reaction media with a simple composition comprising water, a hydrotrope (ethanol, n-propanol, isopropanol, tert-butyl alcohol), and the monomer as the reactive oil phase (methyl methacrylate). Polymerization reactions were performed using oil-soluble, thermal- and UV-active initiators (surfactant-free microsuspension polymerization) and water-soluble, redox-active initiators (surfactant-free microemulsion polymerization). Structural analysis of the SFMEs used and the polymerization kinetics were followed by dynamic light scattering (DLS). Dried polymers were analyzed with regard to their conversion yield by mass balance, the corresponding molar masses were determined using gel permeation chromatography (GPC), and the morphology was investigated by light microscopy. FINDINGS All alcohols are suitable hydrotropes to form SFMEs, except for ethanol, which forms a molecularly disperse system. We observe significant differences in the polymerization kinetics and the molar masses of the polymers obtained. Ethanol leads to significantly higher molar masses. Within a system, higher concentrations of the other alcohols investigated give rise to less pronounced mesostructuring, lower conversions, and lower average molar masses. It could be demonstrated that the effective concentration of alcohol in the oil-rich pseudophases as well as the repulsive effect of the surfactant-free, alcohol-rich interphases constitute the relevant factors influencing polymerization. Concerning the morphology, the polymers derived range from powder-like polymers in the so-called "pre-Ouzo region" over porous-solid polymers in the bicontinuous region to dense, almost compacted, transparent polymers in unstructured regions, comparable to the findings for surfactant-based systems reported in the literature. Polymerizations in SFME comprise a new intermediate between well-known solution (i.e., molecularly dispersed) and microemulsion respectively microsuspension polymerization processes.
Collapse
Affiliation(s)
- Jonas Blahnik
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Sebastian Krickl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Klaus Schmid
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Eva Müller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - John Lupton
- Institute of Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
4
|
Kiriakou M, Pakdel AS, Berry RM, Hoare T, Dubé MA, Cranston ED. Incorporation of Polymer-Grafted Cellulose Nanocrystals into Latex-Based Pressure-Sensitive Adhesives. ACS MATERIALS AU 2022; 2:176-189. [PMID: 36855757 PMCID: PMC9888609 DOI: 10.1021/acsmaterialsau.1c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While the improvement of water-based adhesives with renewable additives is important as industry shifts toward more sustainable practices, a complete understanding of how the compatibility between additives and polymers affects adhesive performance is currently lacking. To elucidate these links, cellulose nanocrystals (CNCs) were first functionalized via surface-initiated atom-transfer radical polymerization with the hydrophobic polymers poly(butyl acrylate) (PBA) and poly(methyl methacrylate) (PMMA) to facilitate their incorporation into latex-based pressure-sensitive adhesives (PSAs). Next, PBA latexes were synthesized using seeded semibatch emulsion polymerization with unmodified or polymer-grafted CNCs added in situ at a loading of 0.5 or 1 phm (parts per hundred parts of monomer). Viscosity and electron microscopy suggested that the polymer-grafted CNCs were incorporated inside or on the latex particles. PSAs containing any CNC type had one or more improved properties (compared to the no-CNC "base case"); CNCs with a low degree of polymerization (DP) grafts exhibited improved tack (up to 2.5-fold higher) and peel strength (up to 6-fold higher) relative to PSAs with unmodified CNCs. The best performing PSA contained the low DP PMMA-grafted CNCs, which is attributed to the higher glass transition temperature and the higher wettability of the PMMA grafts compared to PBA, and the more uniform dispersion of polymer-grafted CNCs throughout the PSA film. In contrast, PSAs containing CNCs with high DP grafts resulted in reduced tack and peel strength (compared to low DP grafts) due to enhanced CNC aggregation. Unfortunately, all PSAs containing polymer-grafted CNCs exhibited inferior shear strength relative to PSAs with unmodified CNCs (and comparable shear strength to the no-CNC "base case"). Collectively, these results provide guidelines for future optimization of more sustainable latex-based PSAs.
Collapse
Affiliation(s)
- Michael
V. Kiriakou
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S
4L7, Canada
| | - Amir Saeid Pakdel
- Department
of Chemical and Biological Engineering, Center for Catalysis Research
and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON K1N
6N5, Canada
| | - Richard M. Berry
- CelluForce
Inc., 625 President-Kennedy
Avenue, Montreal, QC H3A 1K2, Canada
| | - Todd Hoare
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S
4L7, Canada
| | - Marc A. Dubé
- Department
of Chemical and Biological Engineering, Center for Catalysis Research
and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON K1N
6N5, Canada
| | - Emily D. Cranston
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S
4L7, Canada
- Departments
of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Yang X, Yang S, Wang L. Cellulose or chitin nanofibril-stabilized latex for medical adhesion via tailoring colloidal interactions. Carbohydr Polym 2022; 278:118916. [PMID: 34973735 DOI: 10.1016/j.carbpol.2021.118916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop a functional medical adhesive from natural nanofibril-stabilized latex through an aqueous process. Surface charged cellulose or chitin nanofibrils are used to form Pickering emulsions of acrylic monomers, followed by in situ polymerization. Charged initiators are selected to tailor the interactions between them and nanofibrils, and it is found that the repulsive electrostatic interactions play a key role in stabilizing the heterogeneous system. As a result, poly(2-ethylhexyl acrylate-co-methyl methacrylate) latexes are successfully prepared for surfactant-free adhesives with a high shear strength of 72.0 ± 6.5 kPa. In addition, drug can be easily incorporated in the nanopaper substrate or adhesive layer to form a medical tape, exhibiting long-term drug release and antibacterial behaviors. We managed developing a facile method to integrate green synthesis, versatile functionalities and excellent adhesion into one adhesive, which remains a great challenge.
Collapse
Affiliation(s)
- Xianpeng Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuang Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lei Wang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
6
|
Glasing J, Cazotti JC, Fritz AT, Szych LS, Fakim D, Smeets NMB, Cunningham MF. Starch nanoparticles as
Pickering
emulsifiers in miniemulsion polymerization of styrene. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joe Glasing
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Jaime C. Cazotti
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Alexander T. Fritz
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Lilian S. Szych
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Djalal Fakim
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | | | | |
Collapse
|
7
|
Rigg A, Champagne P, Cunningham MF. Polysaccharide-Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromol Rapid Commun 2021; 43:e2100493. [PMID: 34841604 DOI: 10.1002/marc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.
Collapse
Affiliation(s)
- Amanda Rigg
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
8
|
Gabriel VA, Champagne P, Cunningham MF, Dubé MA. In‐situ addition of carboxylated cellulose nanocrystals in seeded semi‐batch emulsion polymerization. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vida A. Gabriel
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario Canada
| | - Pascale Champagne
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | | | - Marc A. Dubé
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
9
|
Gestranius M, Kontturi KS, Mikkelson A, Virtanen T, Schirp C, Cranston ED, Kontturi E, Tammelin T. Creaming Layers of Nanocellulose Stabilized Water-Based Polystyrene: High-Solids Emulsions for 3D Printing. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.738643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oil-in-water emulsions stabilized using cellulose nanofibrils (CNF) form extremely stable and high-volume creaming layers which do not coalesce over extended periods of time. The stability is a result of the synergistic action of Pickering stabilization and the formation of a CNF percolation network in the continuous phase. The use of methyl cellulose (MC) as a co-emulsifier together with CNF further increases the viscosity of the system and is known to affect the droplet size distribution of the formed emulsion. Here, we utilize these highly stable creaming layer systems for in situ polymerization of styrene with the aim to prepare an emulsion-based dope for additive manufacturing. We show that the approach exploiting the creaming layer enables the effortless water removal yielding a paste-like material consisting of polystyrene beads decorated with CNF and MC. Further, we report comprehensive characterization that reveals the properties and the performance of the creaming layer. Solid-state NMR measurements confirmed the successful polymerization taking place inside the nanocellulosic network, and size exclusion chromatography revealed average molecular weight (Mw) of polystyrene as approximately 700,000 Da. Moreover, the amount of the leftover monomer was found to be less than 1% as detected by gas chromatography. The dry solids content of the paste was ∼20% which is a significant increase compared to the solids content of the original CNF dispersion (1.7 wt%). The shrinkage of the CNF, MC and polystyrene structures upon drying—an often-faced challenge—was found to be acceptable for this composite containing highly hygroscopic biobased materials. At best, the two dimensional shrinkage was no more than ca. 20% which is significantly lower than the shrinkage of pure CNF being as high as 50%. The paste, which is a composite of biobased materials and a synthetic polymer, was demonstrated in direct-ink-writing to print small objects. With further optimization of the formulation, we find the emulsion templating approach as a promising route to prepare composite materials.
Collapse
|
10
|
Niinivaara E, Ouzas A, Fraschini C, Berry RM, Dubé MA, Cranston ED. How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200330. [PMID: 34334024 DOI: 10.1098/rsta.2020.0330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Emulsion polymerized latex-based pressure-sensitive adhesives (PSAs) are more environmentally benign because they are synthesized in water but often underperform compared to their solution polymerized counterparts. Studies have shown a simultaneous improvement in the tack, and peel and shear strength of various acrylic PSAs upon the addition of cellulose nanocrystals (CNCs). This work uses atomic force microscopy (AFM) to examine the role of CNCs in (i) the coalescence of hydrophobic 2-ethyl hexyl acrylate/n-butyl acrylate/methyl methacrylate (EHA/BA/MMA) latex films and (ii) as adhesion modifiers over multiple length scales. Thin films with varying solids content and CNC loading were prepared by spin coating. AFM revealed that CNCs lowered the solids content threshold for latex particle coalescence during film formation. This improved the cohesive strength of the films, which was directly reflected in the increased shear strength of the EHA/BA/MMA PSAs with increasing CNC loading. Colloidal probe AFM indicated that the nano-adhesion of thicker continuous latex films increased with CNC loading when measured over small contact areas where the effect of surface roughness was negligible. Conversely, the beneficial effects of the CNCs on macroscopic PSA tack and peel strength were outweighed by the effects of increased surface roughness with increasing CNC loading over larger surface areas. This highlights that CNCs can improve both cohesive and adhesive PSA properties; however, the effects are most pronounced when the CNCs interact favourably with the latex polymer and are uniformly dispersed throughout the adhesive film. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Elina Niinivaara
- Chemical Engineering Department, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 0076 Aalto, Espoo, Finland
| | - Alexandra Ouzas
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Carole Fraschini
- FPInnovations, 570 Saint-Jean Boulevard, Pointe Claire, Quebec, Canada H9R 3J9
| | - Richard M Berry
- CelluForce Inc., 570, Boulevard Saint-Jean, Pointe-Claire, Quebec, H9R 3J9
| | - Marc A Dubé
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Emily D Cranston
- Chemical Engineering Department, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
11
|
Pakdel AS, Cranston ED, Dubé MA. Incorporating Hydrophobic Cellulose Nanocrystals inside Latex Particles via Mini‐Emulsion Polymerization. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amir Saeid Pakdel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa ON K1N 6N5 Canada
| | - Emily D. Cranston
- Department of Wood Science and Department of Chemical and Biological Engineering The University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering University of Ottawa Ottawa ON K1N 6N5 Canada
| |
Collapse
|
12
|
Kedzior SA, Gabriel VA, Dubé MA, Cranston ED. Nanocellulose in Emulsions and Heterogeneous Water-Based Polymer Systems: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002404. [PMID: 32797718 DOI: 10.1002/adma.202002404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Nanocelluloses (i.e., bacterial nanocellulose, cellulose nanocrystals, and cellulose nanofibrils) are cellulose-based materials with at least one dimension in the nanoscale. These materials have unique and useful properties and have been shown to assemble at oil-water interfaces and impart new functionality to emulsion and latex systems. Herein, the use of nanocellulose in both emulsions and heterogeneous water-based polymers is reviewed, including dispersion, suspension, and emulsion polymerization. Comprehensive tables describe past work employing nanocellulose as stabilizers or additives and the properties that can be tailored through the use of nanocellulose are highlighted. Even at low loadings, nanocellulose offers an unprecedented level of control as a property modifier for a range of emulsion and polymer applications, influencing, for example, emulsion type, stability, and stimuli-responsive behavior. Nanocellulose can tune polymer particle properties such as size, surface charge, and morphology, or be used to produce capsules and polymer nanocomposites with enhanced mechanical, thermal, and adhesive properties. The role of nanocellulose is discussed, and a perspective for future direction is presented.
Collapse
Affiliation(s)
- Stephanie A Kedzior
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Vida A Gabriel
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Marc A Dubé
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Emily D Cranston
- Department of Wood Science, Department of Chemical & Biological Engineering, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Garcia‐Valdez O, Champagne P, Cunningham MF. Perspective on the controlled polymer‐modification of chitosan and cellulose nanocrystals: Towards the design of functional materials. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Omar Garcia‐Valdez
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Pascale Champagne
- Department of Civil Engineering Queen's University Kingston Ontario Canada
- Institut national de la recherche scientifique, Centre Eau, Terre, Environment Québec City Québec Canada
| | | |
Collapse
|
14
|
Dupont H, Maingret V, Schmitt V, Héroguez V. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanaé Dupont
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Valentin Maingret
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| |
Collapse
|
15
|
Huang C, Minami H, Okubo M. Synthesis of Micrometer-Sized Poly(methyl acrylate) by Temperature-Step Microsuspension Polymerization with Iodoform Based on the "Radical Exit Depression" Effect §. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3158-3165. [PMID: 33667340 DOI: 10.1021/acs.langmuir.1c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previously, we have reported the successful preparation of micrometer-sized poly(methyl methacrylate) particles without submicrometer-sized byproduct particles by microsuspension iodine-transfer polymerization (ms ITP), in which the radical exit depression (RED) effect was expected, with the benzoyl peroxide initiator at 8 wt % relative to the monomer. However, it was difficult to apply it simply under a similar condition for methyl acrylate (MA), which is more hydrophilic than methyl methacrylate (MMA), because the polymerization rate in the water phase (Rpw) arising from the oligomer radicals exiting from the monomer droplets is high, resulting in a lot of submicrometer-sized byproduct particles. In this study, the problem was overcome by utilizing a two-step temperature process in the microsuspension polymerization with iodoform (ms I) of MA, which supports the proposed mechanism in the ms ITP of MMA in the previous paper. Although the control of the molecular weight (Mn) and the molecular weight distribution (Mn/Mw) was restricted, the preparation of micrometer-sized particles without byproduct particles was realized and a high conversion was reached within a practical time that meets the demands of the industry by utilizing the ms I. The optimal conditions for MA were 70 °C for 2 h, followed by 80 °C for 4 h with a high content of initiator (8 wt % relative to a monomer).
Collapse
Affiliation(s)
- Chujuan Huang
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hideto Minami
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Masayoshi Okubo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
- Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand
| |
Collapse
|
16
|
Lu Y, Li J, Ge L, Xie W, Wu D. Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydr Polym 2021; 255:117483. [DOI: 10.1016/j.carbpol.2020.117483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
|
17
|
Chen XW, Sun SD, Ma CG, Yang XQ. Oil-Water Interfacial-Directed Spontaneous Self-Assembly of Natural Quillaja Saponin for Controlling Interface Permeability in Colloidal Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13854-13862. [PMID: 33166459 DOI: 10.1021/acs.jafc.0c04431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembly of amphiphiles at the interface of two immiscible fluids is of great scientific and technological interest in offering efficient routes to smart vehicles for functional deliveries. Natural Quillaja saponin (QS) has gathered widespread interest within the scientific community as a result of its unique interfacial properties. Herein, spontaneously interface-driven self-assembly (SIDSA) of QS at the oil-water interface was systematically studied by morphology and spectroscopy. It was found to self-assemble into a micrometer-scale network in helical fibers by combined intermolecular π-π stacking and hydrogen bonding among saponins at the liquid-liquid interface. From SIDSA, multilayer films on the surfaces of dispersed droplets were formed and enhanced emulsion stability. Interfacial QS-based films on droplet surfaces were also shown to confine interfacial diffusion processes by serving as transport barriers. Furthermore, they can be exploited to control the release of volatiles from the dispersed liquid phase by regulating the interface film, which is shown by molecular dynamics to occur through a hydrogen-bonded mechanism. These results provide new insight into the interfacial assembly structure that can enable unique controllable release in a broad range of applications in food, beverages, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shang-De Sun
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiao-Quan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
18
|
Griveau L, Delorme J, Engström J, Dugas PY, Carlmark A, Malmström E, D’Agosto F, Lansalot M. Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules 2020; 21:4479-4491. [DOI: 10.1021/acs.biomac.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lucie Griveau
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - James Delorme
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Joakim Engström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Anna Carlmark
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| |
Collapse
|
19
|
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020; 8:392. [PMID: 32435633 PMCID: PMC7218176 DOI: 10.3389/fchem.2020.00392] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Mehdi Derradji
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nanang Masruchin
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M. Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|