1
|
Han Y, Chen R, Ma Z, Wang Q, Wang X, Li Y, Sun G. Stabilization of Pickering emulsions via synergistic interfacial interactions between cellulose nanofibrils and nanocrystals. Food Chem 2022; 395:133603. [PMID: 35780665 DOI: 10.1016/j.foodchem.2022.133603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
Nanocellulose is a promising stabilizer for industrial emulsions that offers the advantages of sustainability, biodegradability and nontoxicity. Emulsions prepared using cellulose nanofibrils (CNF) and nanocrystals (CNCs) in mildly acidic lithium bromide trihydrate (MALBTH) were characterized in this study. At fixed CNCs concentration (0.3 wt%), increasing the CNF content from 0 to 0.9 wt% clearly influenced the stability and microstructure of Pickering emulsions. The Oil droplets size decreased and stabilized with increasing CNF loading. This emulsification behavior was attributed to the irreversible adsorption of CNCs on the surface of the oil droplets and the formation of a dense CNF network in the aqueous phase, thereby improving the emulsion stability. The universal applicability of the proposed method was verified using cyclohexane and edible olive oil as oil phases. Overall, this study may provide a novel means of producing all-natural, low-oil, food-grade emulsions with adjustable stability.
Collapse
Affiliation(s)
- Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Rui Chen
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingyu Wang
- Institute of Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Li
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Temperature-responsive Pickering emulsions stabilized by poly(ethylene glycol)-functionalized silica particles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Weissenberger T, Machoke AGF, Kolle JM, Avadhut YS, Hartmann M, Schwieger W. Synthesis and Catalytic Performance of Aluminium‐containing Mesoporous, Spherical Silica Particles. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias Weissenberger
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Albert G. F. Machoke
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Joel M. Kolle
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Yamini S. Avadhut
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| | - Martin Hartmann
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| | - Wilhelm Schwieger
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| |
Collapse
|
5
|
Huan S, Zhu Y, Xu W, McClements DJ, Bai L, Rojas OJ. Pickering Emulsions via Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12581-12593. [PMID: 33656841 DOI: 10.1021/acsami.0c22560] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We consider the variables relevant to adsorption of renewable nanoparticles and stabilization of multiphase systems, including the particle's hydrophilicity, electrostatic charge, axial aspect, and entanglement. Exploiting the complexation of two oppositely charged nanopolysaccharides, cellulose nanofibrils (CNFs) and nanochitin (NCh), we prepared CNF/NCh aqueous suspensions and identified the conditions for charge balance (turbidity and electrophoretic mobility titration). By adjusting the composition of CNF/NCh complexes, below and above net neutrality conditions, we produced sunflower oil-in-water Pickering emulsions with adjustable droplet diameters and stability against creaming and oiling-off. The adsorption of CNF/NCh complexes at the oil/water interface occurred with simultaneous partitioning (accumulation) of the CNF on the surface of the droplets in net negative or positive systems (below and above stochiometric charge balance relative to NCh). We further show that the morphology of the droplets and size distribution were preserved during storage for at least 6 months under ambient conditions. This long-term stability was held with a remarkable tolerance to changes in pH (e.g., 3-11) and ionic strength (e.g., 100-500 mM). The mechanism explaining these observations relates to the adsorption of the CNF in the complexes, counteracting the charge losses resulting from the deprotonation of NCh or charge screening. Overall, CNF/NCh complexes and the respective interfacial nanoparticle exchange greatly extend the conditions, favoring highly stable, green Pickering emulsions that offer potential in applications relevant to foodstuff, pharmaceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P. R. China
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ya Zhu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P. R. China
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| |
Collapse
|
6
|
Romano A, Sangermano M, Rossegger E, Mühlbacher I, Griesser T, Giebler M, Palmara G, Frascella F, Roppolo I, Schlögl S. Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polym Chem 2021. [DOI: 10.1039/d1py00459j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work highlights the synthesis and post-modification of silica-based micro-particles containing photo-responsive polymer brushes with photolabile o-nitrobenzyl ester (o-NBE) chromophores.
Collapse
Affiliation(s)
- A. Romano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - M. Sangermano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - E. Rossegger
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - I. Mühlbacher
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - T. Griesser
- Institute of Chemistry of Polymeric Materials
- Montanuniversitaet Leoben
- A-8700 Leoben
- Austria
| | - M. Giebler
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - G. Palmara
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - F. Frascella
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - I. Roppolo
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - S. Schlögl
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| |
Collapse
|