1
|
Tripathi N, Pérez-Sánchez G, Schaeffer N, Ray D, Aswal VK, Kuperkar K, Coutinho JAP, Bahadur P. Self-Associated Engineering in P123 Micelles Rationalizing the Role of Other Pluronics with Varying Hydrophilicity as a Mixed System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9967-9988. [PMID: 40214401 DOI: 10.1021/acs.langmuir.5c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
This study explores the atomic-level interactions of different poly(ethylene oxide) (EO)-poly(propylene oxide) (PO)-based block copolymers (BCPs), commercially known as Pluronics, with varying hydrophilicity that influences the solution behavior within Pluronic P123 micelles as a mixed system. The critical insights into the thermoresponsiveness of P123 in the presence of different Pluronics with increasing %EO content (L61, L62, L64, and F68) is hypothesized to modulate the hydrophobic interactions, leading to distinct solution textures such as clear solution (sol), blue point (BP), and cloud point (CP). The solution relative viscosity (ηrel) and rheological analysis will depict the dynamic flow behavior and expose the viscoelastic properties of the blended system. The dynamic light scattering (DLS) analysis will exhibit a temperature-dependent variation in the hydrodynamic diameter (Dh) micelle size in the examined system as a function of temperature, depicting micellar growth, while small-angle neutron scattering (SANS) will explore the intricate micellar structural dynamics in terms of size and shape using various mathematical models. Complementing these findings, transmission electron microscopy (TEM) will offer direct visualization of these micellar structures, confirming the morphological growth/transitions. Coarse-grained molecular dynamics (CG-MD) simulations will elucidate this self-assembly at the molecular scale with micelle size distributions, computed scattering intensity, density profiles, solvent-accessible surface area (SASA), diffusion coefficient (D), and mean squared displacement (MSD) profiles at elevated temperatures to uncover molecular packing and stability.
Collapse
Affiliation(s)
- Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - Germán Pérez-Sánchez
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicolas Schaeffer
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - João A P Coutinho
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat, Gujarat 395 007, India
| |
Collapse
|
2
|
Shah T, Polara H, Babanyinah G, Bhadran A, Wang H, Castillo CC, Grabowski G, Biewer MC, Torabifard H, Stefan MC. Computational design to experimental validation: molecular dynamics-assisted development of polycaprolactone micelles for drug delivery. J Mater Chem B 2025; 13:4166-4178. [PMID: 40047718 DOI: 10.1039/d4tb02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Amphiphilic diblock copolymers are used in drug delivery systems for cancer treatments. However, these carriers suffer from lower drug loading capacity, poor water solubility, and non-targeted drug release. Here, we utilized a computational approach to analyze the effect of the functional groups of the hydrophobic block on the drug-polymer interactions. To design effective drug carriers, four different amphiphilic block copolymer micelles with distinct aromatic and heteroaromatic groups at the hydrophobic core were subjected to molecular dynamics simulations. The solvent-accessible surface area, water shell, hydrogen bonding, and radius of gyration of the simulated micelles were determined. Further, we assessed the interactions between the hydrophobic block and drug molecules using linear interaction energy and non-covalent interactions. The computational studies revealed that the micelles containing a novel poly(γ-2-methoxyfuran-ε-caprolactone) (PFuCL) hydrophobic block have the highest polymer-drug interactions. From these findings, we synthesized a novel amphiphilic poly(ethylene glycol)-b-poly(γ-2-methoxyfuran(ε-caprolactone)) (PEG-b-PFuCL) block copolymer using ring-opening polymerization of FuCL monomer. The polymer was self-assembled in aqueous media to form micelles. The aromatic segment of PEG-b-PFuCL micelles enhanced the doxorubicin (DOX) loading through non-covalent interactions, resulting in a 4.25 wt% drug-loading capacity. We also showed that the hydrolysis of the ester bond allowed a faster in vitro drug release at pH 5.0 compared to pH 7.4. Cell viability experiments revealed that DOX-loaded PEG-b-PFuCL micelles show that micelles are cytotoxic and readily uptaken into MDA-MB-231 cells. Therefore, furan-substituted micelles will be an ideal drug carrier with higher polymer-to-drug interactions, enhanced drug loading, and lower premature leakage.
Collapse
Affiliation(s)
- Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Godwin Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Cristina Cu Castillo
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Gerik Grabowski
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
3
|
Zang Z, Chou S, Tian J, Xu A, Zhao Q, Wang L, He Y, Li B. Study on preparation of "ping-pong" ball shaped chitosan oligosaccharide - based hollow mesoporous carbon carrier for efficient anthocyanins loading. Food Chem 2025; 464:141752. [PMID: 39481308 DOI: 10.1016/j.foodchem.2024.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Carriers for efficient loading and delivery of compounds are urgently needed. A multifunctional nanoplatform of ordered hollow mesoporous carbon (HMC) was developed to load anthocyanins (AN) efficiently. The morphology, specific surface area, binding mode, and biocompatibility of HMC were verified. HMCs were uniformly spherical with well-defined cavities and mesoporous shells, similar to a "ping-pong" ball shape, and this shape of HMC provided a more spatial location for the load of the AN. And the best loading result of AN was 33.39% ± 3.00%. Coarse-grained molecular dynamics (CGMD) simulations showed that HMC and AN may bind by electrostatic interaction and hydrogen bonding, the binding process indicated that HMC contributed to the loading of AN, and the cytotoxicity results showed no significant toxicity of the complex. The homogeneous morphology and good biocompatibility of HMC offer new probabilities for the high effectiveness of oral delivery of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shurui Chou
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd. No.20 Xinyangguang Road,Jiyang street, Zhuji City, Zhejiang Province 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd. No.20 Xinyangguang Road,Jiyang street, Zhuji City, Zhejiang Province 311800, China
| | - Bin Li
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
4
|
Shah T, Stefan MC, Torabifard H. Dynamics of Amphiphilic Poly(ε-Caprolactone) Micelles with Doxorubicin and Transition Temperature Predictions Using All-Atom Molecular Dynamics Simulation. J Phys Chem B 2024; 128:11981-11991. [PMID: 39570651 DOI: 10.1021/acs.jpcb.4c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Despite the advent of novel therapeutics, the efficient delivery of antineoplastic drugs remains a challenge. Biodegradable polymeric micelles represent a promising frontier by offering enhanced drug solubility, tumor targeting, and controlled release profiles. However, the underlying dynamics governing the drug encapsulation and solvation within these micellar structures is still vague and poorly understood. In this study, we used amphiphilic poly(γ-benzyloxy-ε-caprolactone)-b-poly(γ-2-[2-(2-methoxy ethoxy)ethoxy]ethoxy-ε-caprolactone) as a model copolymer with doxorubicin as a model drug and performed all-atom molecular dynamics simulations to understand the regulating mechanism of the encapsulation process. The results are in good agreement with the experimental results. In addition, we interpreted the dynamic behavior of the polymeric micelles and vital intermolecular interactions that play a key role in drug encapsulation. Our study provides a theoretical approach to obtain insights for designing and enhancing novel anticancer drug carriers for therapeutics.
Collapse
Affiliation(s)
- Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Gholizadeh A, Amjad-Iranagh S, Halladj R. Assessing the Interaction between Dodecylphosphocholine and Dodecylmaltoside Mixed Micelles as Drug Carriers with Lipid Membrane: A Coarse-Grained Molecular Dynamics Simulation. ACS OMEGA 2024; 9:40433-40445. [PMID: 39372004 PMCID: PMC11447843 DOI: 10.1021/acsomega.4c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Integrating drugs into cellular membranes efficiently is a significant challenge in drug delivery systems. This study aimed to overcome these barriers by utilizing mixed micelles to enhance drug incorporation into cell membranes. We employed coarse-grained molecular dynamics (MD) simulations to investigate the stability and efficacy of micelles composed of dodecylphosphocholine (DPC), a zwitterionic surfactant, and dodecylmaltoside (DDM), a nonionic surfactant, at various mixing ratios. Additionally, we examined the incorporation of a mutated form of Indolicidin (IND) (CP10A), an anti-HIV peptide, into these micelles. This study provides valuable insights for the development of more effective drug delivery systems by optimizing the mixing ratios of DPC and DDM. By balancing stability and penetration efficiency, these mixed micelles can improve the delivery of drugs that face challenges crossing lipid membranes. Such advancements can enhance the efficacy of treatments for various conditions, including viral infections and cancer, by ensuring that therapeutic agents reach their intended cellular targets more effectively.
Collapse
Affiliation(s)
- Atefeh Gholizadeh
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| | - Sepideh Amjad-Iranagh
- Department
of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| | - Rouein Halladj
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| |
Collapse
|
6
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
7
|
Abd-Elmonem EM, Makky AM, Antar A, Abd-Elsalam WH, Khalil IA. Corneal targeted Amorolfine HCl-mixed micelles for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. J Drug Deliv Sci Technol 2023; 85:104614. [DOI: 10.1016/j.jddst.2023.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Wu W, Ding Q, Zhou Z, Kuang W, Jiang L, Liu P, Ai W, Zhu W. Transcellular Transport Behavior of the Intact Polymeric Mixed Micelles with Different Polymeric Ratios. AAPS PharmSciTech 2023; 24:69. [PMID: 36792796 DOI: 10.1208/s12249-022-02454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 02/17/2023] Open
Abstract
In order to better promote the application of the polymeric mixed micelles (PMMs) in oral delivery, in addition to focusing on the improvement of micellar structural stability, it is necessary to obtain the absorption characteristics of the intact micellar particles. In this work, the transport behavior across Caco-2 cells of FS/PMMs composed of Pluronic F127 and Solutol HS15 was tracked by encapsulating an environment-responsive probe into the particles. The specific property of the probe is the water-initiated aggregation-caused quenching (ACQ) ability, by which integral particles can be identified accurately. The influence of polymeric ratios (FS) on the transcellular behavior of FS/PMMs was explored and the single pass intestinal perfusion experiment was used to further illustrate it. Moreover, pharmacokinetics parameters were detected to analyze the relationship among FS ratios, transport behavior, and pharmacokinetic parameters. FS ratios were found to hardly affect the endocytosis pathways and intracellular itinerary of FS/PMMs, but do affect the proportion of each path. FS/PMMs with high HS15 content, namely System-I, were found to primarily undergo receptor-mediated endocytosis pathway and be less susceptible to lysosomal degradation, which would lead to more absorption and higher Cmax and AUC than drug suspension. In contrast, despite System-II with high F127 content cannot contribute to drug plasma concentration, it can prolong the in vivo retention time. These findings provided evidence for the role of polymeric ratios in modulating the transcellular absorption and pharmacokinetic parameters of the drug-loaded PMMs, and would be a step forward in helping PMMs' design to enhance oral drug delivery.
Collapse
Affiliation(s)
- Wenting Wu
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Quan Ding
- Key Laboratory of Modern Chinese Medicine Preparations Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Modern Chinese Medicine Preparations Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenliang Kuang
- Key Laboratory of Modern Chinese Medicine Preparations Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lipeng Jiang
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Peng Liu
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Weiping Ai
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| | - Weifeng Zhu
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Yuan J, He F, Wen Q, Yu G, Li J, Feng Y. Effects of pH and UV on the stability, drug-loading and release behavior of alginate-based emulsion: A coarse-grained molecular dynamics simulation and experimental study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wu M, Wang D, Kong H, Liu H, Pan H. Development and optimization of aprepitant/HS15/TW80 composite system: Based on micellization thermodynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Prameela GKS, Phani Kumar BVN, Subramanian J, Tsuchiya K, Pan A, Aswal VK, Abe M, Mandal AB, Moulik SP. Interaction between sodium dodecylsulfate (SDS) and pluronic L61 in aqueous medium: assessment of the nature and morphology of the formed mixed aggregates by NMR, EPR, SANS and FF-TEM measurements. Phys Chem Chem Phys 2021; 23:13170-13180. [PMID: 34079976 DOI: 10.1039/d0cp06227h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of copolymer L61 i.e., (EO)2(PO)32(EO)2 (where EO and PO are ethylene and propylene oxides, respectively) with surfactant SDS (sodium dodecylsulfate) in relation to their self-aggregation, dynamics and microstructures has been physicochemically studied in detail employing the Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), Small-Angle Neutron Scattering (SANS), and Freeze-Fracture Transmission Electron Microscopy (FF-TEM) methods. The NMR self-diffusion study indicated a synergistic interaction between SDS and L61 forming L61-SDS mixed complex aggregates, and deuterium (2H) NMR pointed out the nonspherical nature of these aggregates with increasing [L61]. EPR spectral analysis of the motional parameters of 5-doxyl steraric acid (5-DSA) as a spin probe provided information on the microviscosity of the local environment of the L61-SDS complex aggregates. SANS probed the geometrical aspects of the SDS-L61 assemblies as a function of both [L61] and [SDS]. Progressive evolution of the mixed-aggregate geometries from globular to prolate ellipsoids with axial ratios ranging from 2 to 10 with increasing [L61] was found. Such morphological changes were further corroborated with the results of 2H NMR and FF-TEM measurements. The strategy of the measurements, and data analysis for a concerted conclusion have been presented.
Collapse
Affiliation(s)
- G K S Prameela
- Inorganic & Physical Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - B V N Phani Kumar
- NMR, CATERS, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India
| | - J Subramanian
- Inorganic & Physical Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - K Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - A Pan
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - M Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - A B Mandal
- Inorganic & Physical Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - S P Moulik
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
12
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
13
|
Wu W, Gu Y, Li W, Ding Q, Guan Y, Liu W, Wu Q, Zhu W. Understanding the Synergistic Correlation between the Spatial Distribution of Drug-Loaded Mixed Micellar Systems and In Vitro Behavior via Experimental and Computational Approaches. Mol Pharm 2021; 18:1643-1655. [PMID: 33759538 DOI: 10.1021/acs.molpharmaceut.0c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better promote the application of polymeric mixed micelles (PMMs), a coarse-grained molecular dynamics simulation (CGMD) has been employed to investigate the factors controlling the spatial distribution within the PMMs and predict their drug-loading properties, meanwhile, combined with experimental methods to validate and examine it. In this study, the snapshots obtained from CGMD and the results of proton nuclear magnetic resonance (1H NMR) and transmission electron microscopy (TEM) provide new insights into the distribution principle that the spatial distribution depends on the hydrophobic compatibility of drugs with the regions within PMMs. Docetaxel (DTX) is located within the interior or near the core-corona interface of the HS15 hydrophobic core inside FS/PMMs (PMMs fabricated from a nonionic triblock copolymer (F127)) and a nonionic surfactant (HS15), and therefore, the system with a high HS15 ratio, such as system I, is more suitable for loading DTX. In contrast, the more water-soluble puerarin (PUE) is more likely to be solubilized in the "secondary hydrophobic area," mainly formed by the hydrophobic part of F127 within FS/PMMs. However, when the initial feeding concentration of the drug is increased or the FS mixing ratios are changed, an inappropriate distribution would occur and hence influence the drug-loading stability. Also, this impact was further elucidated by the calculated parameters (solvent-accessible surface area (SASA), the radius of gyration (Rg), and energy landscape), and the analysis of the drug leakage, concluding that inappropriate distribution of the drug would lower the stability of the drug in the PMMs. These results combined together provide new insights into the distribution principle that the spatial distribution of drugs within PMMs depends on the hydrophobic compatibility of drugs with the regions formed by micellar materials. Additionally, in vitro drug release yielded a consistent picture with the above conclusions and provides evidence that both the location of the drug within the systems and the stability of the drug-loading system have a great influence on the drug release behavior. Accordingly, this work demonstrates that we can tune the drug-loading stability and drug release behavior via the drug-PMM interaction and drug location study, and CGMD technology would be a step forward in the search for suitable drug-delivery PMMs.
Collapse
Affiliation(s)
- Wenting Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yu Gu
- Patent Examination Cooperation Jiangsu Center of The Patent Office. Sipo, Suzhou 215010, China
| | - Wendong Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Quan Ding
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China
| | - Qiongzhu Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211100, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
14
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|