1
|
Zhang X, Yang L, Wang F, Su Y. Carbon quantum dots for the diagnosis and treatment of ophthalmic diseases. Hum Cell 2024; 37:1336-1346. [PMID: 39093514 DOI: 10.1007/s13577-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Carbon quantum dots (CQDs), an emerging nanomaterial, are gaining attention in ophthalmological applications due to their distinctive physical, chemical, and biological characteristics. For example, their inherent fluorescent capabilities offer a novel and promising alternative to conventional fluorescent dyes for ocular disease diagnostics. Furthermore, because of the excellent biocompatibility and minimal cytotoxicity, CQDs are well-suited for therapeutic applications. In addition, functionalized CQDs can effectively deliver drugs to the posterior part of the eyeball to inhibit neovascularization. This review details the use of CQDs in the management of ophthalmic diseases, including various retinal diseases, and ocular infections. While still in its initial phases within ophthalmology, the significant potential of CQDs for diagnosing and treating eye conditions is evident.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yang
- Harbin Purui Eye Hospital, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The first affiliated hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Cai Q, Wang Y, Ning Y, Jie G. "Two in one": A novel DNA cascade amplification strategy for trace detection of dual targets. Talanta 2024; 273:125978. [PMID: 38521021 DOI: 10.1016/j.talanta.2024.125978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
According to the characteristics of DNA programming, the cascaded nucleic acid amplification technology with larger output can overcome the problem of insufficient sensitivity of single nucleic acid amplification technology, and it combines the advantages of two or even multiple nucleic acid amplification technologies at the same time. In this work, a novel cascade signal amplification strategy with strand displacement amplification (SDA) and cascade hybridization chain reaction (HCR) was proposed for trace detection of hAAG and VEGF165. HAAG-induced SDA produced a large amount of S2 to open H2 on Polystyrene (PS) nanospheres, thereby triggering cascade HCR to form DNA dendritic nanostructures with rich fluorescence (FL) signal probes (565 nm). It could realize the amplification of FL signals for the detection of hAAG. Moreover, many doxorubicin (Dox) were loaded into the GC bases of DNA dendritic nanostructures, and its FL signal was effectively shielded. VEGF165 specifically bound to its aptamer to form G-quadruplex structures, which released Dox to produce a high FL signal (590 nm) for detection of VEGF165. This work developed a unique multifunctional DNA dendritic nanostructure fluorescence probe, and cleverly designed a new "On-off" switch strategy for sensitive trace detection of cancer markers.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuanzhen Ning
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Xu J, Zhu N, Du Y, Han T, Zheng X, Li J, Zhu S. Biomimetic NIR-II fluorescent proteins created from chemogenic protein-seeking dyes for multicolor deep-tissue bioimaging. Nat Commun 2024; 15:2845. [PMID: 38565859 PMCID: PMC10987503 DOI: 10.1038/s41467-024-47063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Near-infrared-I/II fluorescent proteins (NIR-I/II FPs) are crucial for in vivo imaging, yet the current NIR-I/II FPs face challenges including scarcity, the requirement for chromophore maturation, and limited emission wavelengths (typically < 800 nm). Here, we utilize synthetic protein-seeking NIR-II dyes as chromophores, which covalently bind to tag proteins (e.g., human serum albumin, HSA) through a site-specific nucleophilic substitution reaction, thereby creating proof-of-concept biomimetic NIR-II FPs. This chemogenic protein-seeking strategy can be accomplished under gentle physiological conditions without catalysis. Proteomics analysis identifies specific binding site (Cys 477 on DIII). NIR-II FPs significantly enhance chromophore brightness and photostability, while improving biocompatibility, allowing for high-performance NIR-II lymphography and angiography. This strategy is universal and applicable in creating a wide range of spectrally separated NIR-I/II FPs for real-time visualization of multiple biological events. Overall, this straightforward biomimetic approach holds the potential to transform fluorescent protein-based bioimaging and enables in-situ albumin targeting to create NIR-I/II FPs for deep-tissue imaging in live organisms.
Collapse
Affiliation(s)
- Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P.R. China
| | - Ningning Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jia Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
4
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
5
|
Bai S, Zhang J, Gao Y, Chen X, Wang K, Yuan X. Surface Functionalization of Electrospun Scaffolds by QK-AG73 Peptide for Enhanced Interaction with Vascular Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14162-14172. [PMID: 37722015 DOI: 10.1021/acs.langmuir.3c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Rapid endothelialization still remains challenging for blood-contacting biomaterials, especially for long-term, functional, small-diameter vascular grafts. The vascular endothelial growth factor (VEGF)-mimicking QK peptide holds great promise in promoting vascular endothelial cellular activities such as adhesion, spreading, proliferation, and migration. Syndecans are transmembrane proteoglycans that are highly expressed on cell surfaces, including vascular endothelial cells, which can act as docking receptors to provide binding sites for a variety of cellular growth and signaling molecules. Herein, a novel peptide QK-AG73 that coupled the QK domain with the syndecan binding peptide AG73 was proposed, aiming to synergistically enhance the interaction with vascular endothelial cells. In addition, mechanically matched bioactive scaffolds based on poly(l-lactide-co-ε-caprolactone) were successfully prepared by surface functionalization of the covalently combined QK-AG73 peptide. The result showed that the adhesion of human umbilical vein endothelial cells (HUVECs) was increased by approximately 2-fold on QK-AG73-modified surface compared with those modified with a single QK or AG73 peptide. Moreover, surface functionalization of electrospun scaffolds by this QK-AG73 peptide was more efficient in specifically promoting the proliferation of HUVECs and allowing them to grow with an elongated cobblestone-like cell morphology. It was hypothesized that both VEGF receptors and transmembrane syndecan receptors were involved in cellular regulation by the QK-AG73 peptide, which resulted in synergistic improvement of the interactions with vascular endothelial cells and provided a promising strategy to promote endothelialization of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shan Bai
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yong Gao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyan Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Farshidfar N, Fooladi S, Nematollahi MH, Iravani S. Carbon dots with tissue engineering and regenerative medicine applications. RSC Adv 2023; 13:14517-14529. [PMID: 37197681 PMCID: PMC10183719 DOI: 10.1039/d3ra02336b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Carbon dots (CDs) with unique physicochemical features such as exceptional biocompatibility, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl), high stability, and electron mobility have been broadly investigated in nano- and biomedicine. In addition, the controlled architecture, tunable fluorescence emission/excitation, light-emitting potential, high photostability, high water solubility, low cytotoxicity, and biodegradability make these carbon-based nanomaterials suitable for tissue engineering and regenerative medicine (TE-RM) purposes. However, there are still limited pre- and clinical assessments, because of some important challenges such as the scaffold inconsistency and non-biodegradability in addition to the lack of non-invasive methods to monitor tissue regeneration after implantation. In addition, the eco-friendly synthesis of CDs exhibited some important advantages such as environmentally friendly properties, low cost, and simplicity compared to the conventional synthesis techniques. Several CD-based nanosystems have been designed with stable photoluminescence, high-resolution imaging of live cells, excellent biocompatibility, fluorescence properties, and low cytotoxicity, which make them promising candidates for TE-RM purposes. Combining attractive fluorescence properties, CDs have shown great potential for cell culture and other biomedical applications. Herein, recent advancements and new discoveries of CDs in TE-RM are considered, focusing on challenges and future perspectives.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences Shiraz Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences Kerman Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences Kerman Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| |
Collapse
|
7
|
Liu XY, Du SC, Jiang FL, Jiang P, Liu Y. Regulation mechanism of human insulin fibrillation by L-lysine carbon dots: low concentration accelerates but high concentration inhibits the fibrillation process. Phys Chem Chem Phys 2023; 25:13542-13549. [PMID: 37133393 DOI: 10.1039/d3cp01083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fibrillation process of human insulin (HI) is closely related to the therapy for type II diabetes (T2D). Due to changes in the spatial structure of HI, the fibrillation process of HI takes place in the body, which leads to a significant decrease in normal insulin levels. L-Lysine CDs with a size of around 5 nm were synthesized and used to adjust and control the fibrillation process of HI. ThT fluorescence analysis and transmission electron microscopy (TEM) characterization of the CDs showed the role of HI fibrillation from the perspective of the kinetics of HI fibrillation and regulation. Isothermal titration calorimetry (ITC) was used to explore the regulatory mechanism of CDs at all stages of HI fibrillation from the perspective of thermodynamics. Contrary to common sense, when the concentration of CDs is less than 1/50 of the HI, CDs will promote the growth of fibres, while a high concentration of CDs will inhibit the growth of fibres. The experimental results of ITC clearly prove that different concentrations of CDs will correspond to different pathways of the combination between CDs and HI. CDs have a strong ability to combine with HI during the lag time, and the degree of combination has become the main factor influencing the fibrillation process.
Collapse
Affiliation(s)
- Xing-Yu Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Shuai-Chen Du
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- Hubei Jiangxia Laboratory, Wuhan 430023, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
8
|
Chen R, Ma H, Li X, Wang M, Yang Y, Wu T, Zhang Y, Kong H, Qu H, Zhao Y. A Novel Drug with Potential to Treat Hyperbilirubinemia and Prevent Liver Damage Induced by Hyperbilirubinemia: Carbon Dots Derived from Platycodon grandiflorum. Molecules 2023; 28:molecules28062720. [PMID: 36985691 PMCID: PMC10056707 DOI: 10.3390/molecules28062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Platycodon grandiflorum (PG) is a traditional Chinese medicine with a long history, but its active compounds have not been reported. In this study, novel carbon dots (CDs), PG-based CDs (PGC-CDs), were discovered and prepared from PG via calcinations and characterized by transmission electron microscopy; high-resolution transmission electron microscopy; X-ray diffraction, fluorescence, ultraviolet-visible, and Fourier-transform infrared spectrometers; X-ray photoelectron spectroscopy; and high-performance liquid chromatography. In addition, the safety and antioxidant activity of PGC-CDs was evaluated by RAW264.7 cells and LO2 cells. The therapeutic effects of PGC-CDs on hyperbilirubinemia and liver protection were evaluated in a bilirubin-induced hyperbilirubinemia mice model. The experiment confirmed that the diameter range of PGC-CDs was from 1.2 to 3.6 nm. PGC-CDs had no toxicity to RAW264.7 cells and LO2 cells at a concentration of 3.91 to 1000 µg/mL and could reduce the oxidative damage of cells caused by H2O2. PGC-CDs could inhibit the increase levels of bilirubin and inflammation factors and increase the levels of antioxidants and survival rate, demonstrating that PGC-CDs possessed anti-inflammatory and anti-oxidation activity. PGC-CDs may reduce the content of bilirubin, so as to reduce a series of pathological lesions caused by bilirubin, which has potential in treating hyperbilirubinemia and preventing liver damage induced by hyperbilirubinemia.
Collapse
Affiliation(s)
- Rui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: ; Tel.: +86-010-6428-6705; Fax: +86-010-6428-6821
| |
Collapse
|
9
|
Salehi S, Tavakoli M, Mirhaj M, Varshosaz J, Labbaf S, Karbasi S, Jafarpour F, Kazemi N, Salehi S, Mehrjoo M, Emami E. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications. Carbohydr Polym 2023; 312:120787. [PMID: 37059527 DOI: 10.1016/j.carbpol.2023.120787] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Three-dimensional (3D) printing technology has become an advanced approach for fabricating patient-specific scaffolds with complex geometric shapes to replace damaged or diseased tissue. Herein, polylactic acid (PLA)-Baghdadite (Bgh) scaffold were made through the fused deposition modeling (FDM) 3D printing method and subjected to alkaline treatment. Following fabrication, the scaffolds were coated with either chitosan (Cs)-vascular endothelial growth factor (VEGF) or lyophilized Cs-VEGF known as PLA-Bgh/Cs-VEGF and PLA-Bgh/L.(Cs-VEGF), respectively. Based on the results, it was found that the coated scaffolds had higher porosity, compressive strength and elastic modulus than PLA and PLA-Bgh samples. Also, the osteogenic differentiation potential of scaffolds following culture with rat bone marrow-derived mesenchymal stem cells (rMSCs) was evaluated through crystal violet and Alizarin-red staining, alkaline phosphatase (ALP) activity and calcium content assays, osteocalcin measurements, and gene expression analysis. The release of VEGF from the coated scaffolds was assessed and also the angiogenic potential of scaffolds was evaluated. The sum of results presented in the current study strongly suggests that the PLA-Bgh/L.(Cs-VEGF) scaffold can be a proper candidate for bone healing applications.
Collapse
Affiliation(s)
- Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepideh Salehi
- Department of Medicine, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Eshagh Emami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials. Molecules 2022; 27:molecules27196186. [PMID: 36234727 PMCID: PMC9573568 DOI: 10.3390/molecules27196186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Today, sustainable and natural resources including biowastes have been considered attractive starting materials for the fabrication of biocompatible and biodegradable carbon dots (CDs) due to the benefits of availability, low cost, biorenewability, and environmentally benign attributes. These carbonaceous nanomaterials have been widely explored in the field of sensing/imaging, optoelectronics, photocatalysis, drug/gene delivery, tissue engineering, regenerative medicine, and cancer theranostics. Designing multifunctional biowaste-derived CDs with a high efficacy-to-toxicity ratio for sustained and targeted drug delivery, along with imaging potentials, opens a new window of opportunity toward theranostic applications. However, crucial challenges regarding the absorption/emission wavelength, up-conversion emission/multiphoton fluorescence mechanisms, and phosphorescence of these CDs still need to be addressed to attain the maximum functionality and efficacy. Future studies ought to focus on optimizing the synthesis techniques/conditions, evaluating the influence of nucleation/growth process on structures/properties, controlling their morphology/size, and finding the photoluminescence mechanisms. Reproducibility of synthesis techniques is another critically important factor that needs to be addressed in the future. Herein, the recent developments related to the biowaste-derived CDs with respect to their biomedical applications are deliberated, focusing on important challenges and future perspectives.
Collapse
|
11
|
Gong X, Wang Z, Zhang L, Dong W, Wang R, Liu Y, Song S, Hu Q, Du F, Shuang S, Dong C. A novel carbon-nanodots-based theranostic nano-drug delivery system for mitochondria-targeted imaging and glutathione-activated delivering camptothecin. Colloids Surf B Biointerfaces 2022; 218:112712. [PMID: 35921692 DOI: 10.1016/j.colsurfb.2022.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Chemotherapy is severely limited by continuously decreased therapeutic efficacy and uncontrolled side effects on normal tissue, which can be improved by constructing a nanoparticle-based drug delivery system (DDS). Nevertheless, no studies have reported on DDS-based on carbon-nanodots (CNDs), combining subcellular organelle-targeted imaging/drug delivery, high drug loading content, and glutathione (GSH)-sensitive drug release into one system. Herein, the as-fabricated CNDs can be covalently conjugated with a mitochondria-targeting ligand (triphenylphosphine, TPP), a smart GSH-responsive disulfide linker (S-S), and the anticancer drug (camptothecin, CPT) to initially prepare a theranostic nano-DDS (TPP-CNDs-S-CPT) with the drug loading efficiency of 64.6 wt%. Owing to excellent water dispersibility, superior fluorescence properties, satisfactory cell permeability, and favorable biocompatibility, TPP-CNDs-S-CPT was successfully used for intracellular mitochondrial-targeted imaging in vitro. High intracellular GSH concentrations in tumor cells caused the cleavage of S-S, resulting in concomitant activation and release of CPT, as well as significant fluorescence enhancement. In vivo, TPP-CNDs-S-CPT exhibited lower biological toxicity and even higher tumor-activatable performance than free CPT, as well as specific cancer therapy with few side effects. The mitochondria-targeted ability and the precise drug-release in tumor make TPP-CNDs-S-CPT a hopeful chemotherapy prodrug, providing significant theoretical basis and data support for in-depth understanding and exploration of chemotherapeutic DDS-based on CNDs.
Collapse
Affiliation(s)
- Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Zihan Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Li Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ruiping Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Fangfang Du
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Zirak Hassan Kiadeh S, Ghaee A, Pishbin F, Nourmohammadi J, Farokhi M. Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. Int J Biol Macromol 2022; 216:605-617. [PMID: 35809673 DOI: 10.1016/j.ijbiomac.2022.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Pectin has recently attracted increasing attention as an alternative biomaterial commonly used in biomedical and pharmaceutical fields. It shows several promising properties, including good biocompatibility, health benefits, nontoxicity, and biodegradation. In this research, novel nanocomposite fibers composed of folic acid-decorated carbon dots (CDs) in pectin/PEO matrix were fabricated using the electrospinning technique, which was never reported previously. Nitrogen-doped and nitrogen, sulfur-doped CDs were synthesized with average diameters of 2.74 nm and 2.17 nm using the one-step hydrothermal method, studied regarding their physicochemical, optical, and biocompatibility properties. The relative Quantum yields of N-CDs and N, S doped CDs were measured to be 54.7 % and 30.2 %, respectively. Nanocomposite fibers containing CDs were prepared, and their morphology, physicochemical properties, conductivity, drug release behavior, and cell viability were characterized. The results indicated that CDs improve fibrous scaffolds' tensile strength from 13.74 to 35.22 MPa while maintaining comparable extensibility. Furthermore, by incorporation of CDs in the prepared fibers conductivity enhanced from 8.69 × 10-9 S·m-1 to 1.36 × 10-4 S·m-1. The nanocomposite fibrous scaffold was also biocompatible with controlled drug release over 212 h, potentially promising tissue regeneration.
Collapse
Affiliation(s)
- Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Distefano A, Calì F, Gaeta M, Tuccitto N, Auditore A, Licciardello A, D'Urso A, Lee KJ, Monasson O, Peroni E, Grasso G. Carbon dots surface chemistry drives fluorescent properties: New tools to distinguish isobaric peptides. J Colloid Interface Sci 2022; 625:405-414. [PMID: 35724463 DOI: 10.1016/j.jcis.2022.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 10/31/2022]
Abstract
The possibility to design rational carbon dots surface functionalization for specific analytical and bioanalytical applications is hindered by the lack of a full knowledge of the surface chemical features driving fluorescent properties. In this model study, we have synthesized four different peptides, three of which are isobaric and not distinguishable by common MSMS experiments. After having characterized the peptides conformations by CD analyses, we have covalently bonded all four peptides to carbon dots by using different experimental procedures, which produce different functional groups on the carbon dots surface. The peptide orientations obtained on the differently functionalized surface of the nanoparticles were different and produced different fluorescent responses. The reported results indicate the possibility to design amino and carboxyl enriched surface carbon dots to answer specific chemical requirements, paving the way for the use of these nanoparticles as a versatile and useful new chemical and biochemical tool.
Collapse
Affiliation(s)
- Alessia Distefano
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Federico Calì
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Massimiliano Gaeta
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Nunzio Tuccitto
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Alessandro Auditore
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonino Licciardello
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Alessandro D'Urso
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Kwang-Jin Lee
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Olivier Monasson
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; CY Cergy Paris Université, CY PeptLab, 95000 Cergy Pontoise, France
| | - Elisa Peroni
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; CY Cergy Paris Université, CY PeptLab, 95000 Cergy Pontoise, France
| | - Giuseppe Grasso
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
14
|
Hallaji Z, Bagheri Z, Oroujlo M, Nemati M, Tavassoli Z, Ranjbar B. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Mikrochim Acta 2022; 189:190. [PMID: 35419708 DOI: 10.1007/s00604-022-05259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photostability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell organelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.
Collapse
Affiliation(s)
- Zahra Hallaji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran.
| | - Mahdi Oroujlo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Mehrnoosh Nemati
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Zeinab Tavassoli
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran. .,Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran.
| |
Collapse
|
15
|
Vishlaghi N, Rieger S, McGaughey V, Lisse TS. GDNF neurotrophic factor signaling determines the fate of dermal fibroblasts in wound-induced hair neogenesis and skin regeneration. Exp Dermatol 2022; 31:577-581. [PMID: 35020233 PMCID: PMC9306530 DOI: 10.1111/exd.14526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 01/08/2022] [Indexed: 11/27/2022]
Abstract
We propose that GDNF, a glial cell line‐derived neurotrophic factor, can promote hair follicle neogenesis and skin regeneration after wounding by directing the fate of dermal fibroblasts. Our hypothesis is largely based on detailed GDNF and receptor analysis during skin regenerative stages, as well as the induction of GDNF receptors after wounding between the pro‐regenerative spiny mouse (genus Acomys) and its less‐regenerative descendant, the house mouse (Mus musculus). To characterize the GDNF‐target cells, we will conduct a series of lineage‐tracing experiments in conjunction with single‐cell RNA and assay for transposase‐accessible chromatin sequencing experiments. The heterogenetic dynamics of skin regeneration have yet to be fully defined, and this research will help to advance the fields of regenerative medicine and biology. Finally, we believe that stimulating the GDNF signalling pathway in fibroblasts from less‐regenerative animals, such as humans, will promote skin regeneration, morphogenesis and scarless wound healing.
Collapse
Affiliation(s)
- Neda Vishlaghi
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Sandra Rieger
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vanessa McGaughey
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Thomas S Lisse
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
16
|
An CZ, Li CQ, Song LB, He YF, Chen W, Liu B, Zhao YD. A simple fluorescent strategy for liver capillary labeling with carbon quantum dot-lectin nanoprobe. Analyst 2022; 147:1952-1960. [DOI: 10.1039/d1an02364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on lycopersicon esculentum lectin that can target vascular endothelial cells and carbon quantum dots, we designed a carbon-based probe for the fluorescence labeling and imaging of hepatic blood vessels of liver tissue sections.
Collapse
Affiliation(s)
- Chang-Zhi An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Lai-Bo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yan-Fei He
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
17
|
Basiri H, Mohseni SS, Abouei Mehrizi A, Rajabnejadkeleshteri A, Ghaee A, Farokhi M, Kumacheva E. Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles. Biomacromolecules 2021; 22:5162-5172. [PMID: 34793119 DOI: 10.1021/acs.biomac.1c01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monitoring the supply of vascular endothelial growth factor (VEGF) to ischemic tissues provides information on its biodistribution and delivery to meet the requirements of therapeutic angiogenesis and tissue engineering applications. We herein report the use of microfluidically generated microgels containing VEGF-conjugated fluorescent carbon dots (CDs) (VEGF-CDs), a gelatin-phenol conjugate, and silk fibroin for imaging-monitored tracking of VEGF delivery to ischemic muscles. An in vitro release study and a bioactivity assay indicated that the VEGF-CDs were released in a sustained manner with high bioactivity. The microgels showed a high angiogenesis potential, along with a strong fluorescent signal, for the chicken chorioallantoic membrane and chick embryo. Imaging and studies of therapeutic modalities of the composite microgels indicated their effective localization in ischemic tissues and sustained VEGF release, which resulted in enhanced therapeutic angiogenesis of ischemic muscles. This work reveals the success of using VEGF-loaded composite polymer microgels for efficient and monitored VEGF delivery by intramuscular administration for ischemic disease treatment.
Collapse
Affiliation(s)
- Hamideh Basiri
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174, Iran.,Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto M5S 3H6, Ontario, Canada
| | - Seyed Sepehr Mohseni
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174, Iran
| | - Ali Abouei Mehrizi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174, Iran
| | - Alireza Rajabnejadkeleshteri
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto M5S 3H6, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto M5S 3G9, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto M5S3E5, Ontario, Canada
| |
Collapse
|
18
|
Genc MT, Yanalak G, Aksoy I, Aslan E, Patır IH. Green Carbon Dots (GCDs) for Photocatalytic Hydrogen Evolution and Antibacterial Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Gizem Yanalak
- Department of Biochemistry Selcuk University 42030 Konya Turkey
| | - Ilknur Aksoy
- Department of Biotechnology Selcuk University 42030 Konya Turkey
| | - Emre Aslan
- Department of Biochemistry Selcuk University 42030 Konya Turkey
| | | |
Collapse
|
19
|
Rajabnejadkeleshteri A, Basiri H, Mohseni SS, Farokhi M, Mehrizi AA, Moztarzadeh F. Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. Int J Biol Macromol 2021; 184:29-41. [PMID: 34048836 DOI: 10.1016/j.ijbiomac.2021.05.148] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The controlled delivery of the bone morphogenetic protein-2 (BMP-2) with tracking ability would overcome most of the side effects linked to the burst release and uncontrolled delivery of this growth factor for bone regeneration. Herein, BMP-2-conjugated carbon dots (CDs) was used as noninvasive detection platforms to deliver BMP-2 for therapeutic applications where osteogenesis and bioimaging are both required. With this in mind, the present work aimed to develop a controlled BMP-2-CDs release system using composite scaffolds containing BMP-2-CDs loaded pectin microparticles, which had been optimized for bone regeneration. By using microfluidic approach, we encapsulated BMP-2-CDs in pectin microparticles with narrow size distribution and then incorporated into composite scaffolds composed of gelatin, elastin, and hyaluronic acid. The BMP-2-CDs was released from the composite scaffolds in a sustained fashion for up to 21 days exhibited a high controlled delivery capacity. When tested in vitro with MG-63 cells, these extraction mediums showed the intercellular uptake of BMP-2-CDs and enhanced biological properties and pro-osteogenic effect. By utilizing the pectin microparticles carrying BMP-2-CDs as promising bioimaging agents for growth factor delivery and by tuning the composition of the scaffolds, this platform has immense potential in the field of bone tissue regeneration.
Collapse
Affiliation(s)
- Alireza Rajabnejadkeleshteri
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Hamideh Basiri
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyed Sepehr Mohseni
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Abouei Mehrizi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
20
|
Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111328. [DOI: 10.1016/j.msec.2020.111328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
|
21
|
Garner I, Vichare R, Paulson R, Appavu R, Panguluri SK, Tzekov R, Sahiner N, Ayyala R, Biswal MR. Carbon Dots Fabrication: Ocular Imaging and Therapeutic Potential. Front Bioeng Biotechnol 2020; 8:573407. [PMID: 33102456 PMCID: PMC7546398 DOI: 10.3389/fbioe.2020.573407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 01/25/2023] Open
Abstract
Vision loss is a major complication in common ocular infections and diseases such as bacterial keratitis, age-related macular degeneration (AMD) and diabetic retinopathy (DR). The prevalence of such ophthalmic diseases represents an urgent need to develop safe, effective, and long-term treatments. Current therapies are riddled with drawbacks and limitations which calls for the exploration of alternative drug delivery mechanisms. Toxicity of the inorganic metals and metal oxides used for drug delivery raise safety concerns that are alleviated with the alternate use of, a natural and organic polymer which is both biocompatible and environmentally friendly. Carbon dots (CDs) represent a great potential in novel biomedical applications due to their tunable fluorescence, biocompatibility, and ability to be conjugated with diverse therapeutic materials. There is a growing interest on the exploitation of these properties for drug delivery with enhanced bio-imaging. However, there are limited reports of CD applications for ophthalmic indications. In this review, we focus on the CD potential and the development of translational therapies for ophthalmic diseases. The current review presents better understanding of fabrication of CDs and how it may be useful in delivering anti-bacterial agents, anti-VEGF molecules as well as imaging for ophthalmic applications.
Collapse
Affiliation(s)
- Inyoung Garner
- MSPN Graduate Programs, Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Riddhi Vichare
- MSPN Graduate Programs, Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Ryan Paulson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Rajagopal Appavu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Radouil Tzekov
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nurettin Sahiner
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ramesh Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Manas R Biswal
- MSPN Graduate Programs, Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States.,Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States.,Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|