1
|
Mermigkis P, Karadima KS, Pandis SN, Mavrantzas VG. Geometric Analysis of Free and Accessible Volume in Atmospheric Nanoparticles. ACS OMEGA 2023; 8:33481-33492. [PMID: 37744838 PMCID: PMC10515339 DOI: 10.1021/acsomega.3c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 09/26/2023]
Abstract
Computer-generated atomistic microstructures of atmospheric nanoparticles are geometrically analyzed using Delaunay tessellation followed by Monte Carlo integration to compute their free and accessible volume. The nanoparticles studied consist of cis-pinonic acid (a biogenic organic aerosol component), inorganic ions (sulfate and ammonium), and water. Results are presented for the free or unoccupied volume in different domains of the nanoparticles and its dependence on relative humidity and organic content. We also compute the accessible volume to small penetrants such as water molecules. Most of the free volume or volume accessible to a penetrant as large as a water molecule is located in the domains occupied by organics. In contrast, regions dominated by inorganics do not have any cavities with sizes larger than 1 Å. Solid inorganic domains inside the particle are practically impermeable to any small molecule, thereby offering practically infinite resistance to diffusion. A guest molecule can find diffusive channels to wander around within the nanoparticle only through the aqueous and organic-rich domains. The largest pores are observed in nanoparticles with high levels of organic mass and low relative humidity. At high relative humidity, the presence of more water molecules reduces the empty space in the inner domains of the nanoparticle, since areas rich in organic molecules (which are the only ones where appreciable pores are found) are pushed to the outer area of the particle. This, however, should not be expected to affect the diffusive process as transport through the aqueous phase inside the particle will be, by default, fast due to its fluid-like nature.
Collapse
Affiliation(s)
- Panagiotis
G. Mermigkis
- Department
of Chemical Engineering, University of Patras, GR 26504, Patras, Greece
- Institute
of Chemical Engineering Sciences, FORTH-ICE/HT,
Patras, GR 26504, Patras, Greece
| | - Katerina S. Karadima
- Department
of Chemical Engineering, University of Patras, GR 26504, Patras, Greece
- Institute
of Chemical Engineering Sciences, FORTH-ICE/HT,
Patras, GR 26504, Patras, Greece
| | - Spyros N. Pandis
- Department
of Chemical Engineering, University of Patras, GR 26504, Patras, Greece
- Institute
of Chemical Engineering Sciences, FORTH-ICE/HT,
Patras, GR 26504, Patras, Greece
| | - Vlasis G. Mavrantzas
- Department
of Chemical Engineering, University of Patras, GR 26504, Patras, Greece
- Institute
of Chemical Engineering Sciences, FORTH-ICE/HT,
Patras, GR 26504, Patras, Greece
- Particle
Technology Laboratory, Institute of Energy & Process Engineering,
Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
2
|
Isci R, Baysak E, Kesan G, Minofar B, Eroglu MS, Duygulu O, Gorkem SF, Ozturk T. Non-covalent modification of single wall carbon nanotubes (SWCNTs) by thienothiophene derivatives. NANOSCALE 2022; 14:16602-16610. [PMID: 36317494 DOI: 10.1039/d2nr04582f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Non-covalent functionalization of single wall carbon nanotubes (SWCNTs) has been conducted using several binding agents with surface π-interaction forces in recent studies. Herein, we present the first example of non-covalent functionalization of sidewalls of SWCNTs using thienothiophene (TT) derivatives without requiring any binding agents. Synthesized TT derivatives, TT-CN-TPA, TT-CN-TPA2 and TT-COOH-TPA, were attached directly to SWCNTs through non-covalent interactions to obtain new TT-based SWCNT hybrids, HYBRID 1-3. Taking advantage of the presence of sulfur atoms in the structure of TT, HYBRID 1, as a representative, was treated with Au nanoparticles for the adsorption of Au by sulfur atoms, which generated clear TEM images of the particles. The images indicated the attachment of TTs to the surface of SWCNTs. Thus, the presence of sulfur atoms in TT units made the binding of TTs to SWCNTs observable via TEM analysis through adsorption of Au nanoparticles by the sulfur atoms. Surface interactions between TTs and SWCNTs of the new hybrids were also clarified by classical molecular dynamic simulations, a quantum mechanical study, and SEM, TEM, AFM and contact angle (CA) analyses. The minimum distance between a TT and a SWCNT reached up to 3.5 Å, identified with strong peaks on a radial distribution function (RDF), while maximum interaction energies were raised to -316.89 kcal mol-1, which were determined using density functional theory (DFT).
Collapse
Affiliation(s)
- Recep Isci
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Elif Baysak
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Gurkan Kesan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, České Budějovice, Czech Republic
| | - Babak Minofar
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, České Budějovice, Czech Republic
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Mehmet S Eroglu
- Metallurgical and Materials Engineering Dept., Faculty of Engineering, Marmara University, Aydınevler, Maltepe, 34854, Istanbul, Turkey
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK National Metrology Institute, Gebze, Kocaeli, 54 41470, Turkey
| | - Ozgur Duygulu
- Material Technologies, TUBITAK Marmara Research Center, Gebze, Kocaeli, 41470, Turkey
| | - Sultan F Gorkem
- Chemistry Department, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Turan Ozturk
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK National Metrology Institute, Gebze, Kocaeli, 54 41470, Turkey
| |
Collapse
|
3
|
Voyiatzis E, Stroeks A. Atomistic Modeling of Hydrogen and Oxygen Solubility in Semicrystalline PA-6 and HDPE Materials. J Phys Chem B 2022; 126:6102-6111. [PMID: 35921684 DOI: 10.1021/acs.jpcb.2c02854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen is a clean and sustainable energy carrier which plays a major role in the transition of the global energy market to a less fossil fuel dependent future. Polymer-based materials are crucial in the production, storage, transportation, and energy extraction of hydrogen. More insights in the hydrogen-polymers interactions are required to guide material design and product development, especially for hydrogen solubility in polymers, which is crucial in many applications. The current study aims at rationalizing the determining factors of hydrogen solubility in two relevant polymers: polyamide-6 (PA-6) and high density polyethylene (HDPE). Based on atomistic molecular dynamics simulations and experimental data, we have reached several conclusions related to hydrogen and oxygen solubility in these two polymers. The crystal phases of PA-6 and HDPE are impenetrable to hydrogen and oxygen at elevated pressures, despite the small molecular size of hydrogen and oxygen. The practical implication for gas barrier applications is that polymer crystals act as impermeable obstacles and gas migration takes place primarily in the amorphous phase. Experimental hydrogen and oxygen solubilities in PA-6 and HDPE at elevated pressures can be predicted in a semiquantitative manner by molecular simulations. The discrepancies between experimental and predicted values could be attributed to neglect of the effect of crystal regions on the amorphous polymer domains. Although hydrogen is smaller than oxygen, it has been experimentally observed that hydrogen has a lower solubility in PA-6 and HDPE than oxygen. This observation has been confirmed by molecular simulations and attributed to the more favorable energetic interactions of oxygen with PA-6 and PE than of hydrogen. These interactions dominate the solubility behavior over the distribution of the accessible volume in the polymers.
Collapse
Affiliation(s)
| | - Alexander Stroeks
- DSM Engineering Materials, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|