1
|
Hou J, Li Y, Tan H, Chen M, Wu J, Zhang Y, Lu X, Wang Y, Wang X, Hua C, Chu J, Gong M, Xiong S. Structural design and enhanced electrochromic properties of thiophene-based covalent organic framework. J Colloid Interface Sci 2025; 699:138107. [PMID: 40541019 DOI: 10.1016/j.jcis.2025.138107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/26/2025] [Accepted: 06/05/2025] [Indexed: 06/22/2025]
Abstract
Covalent organic framework (COF) materials are a class of porous organic polymers with crystal structures connected through strong covalent bonds. Due to the diversity as well as designability of their structural units, the framework structure can be precisely regulated at the atomic level through the combination of virus-active building units. In particular, the advantages of COF materials, such as designable space structure, regular pore structure, high specific surface area, low density, high thermal stability, and chemical stability, make it one of the ideal materials in the field of optoelectronic materials. In this paper, a series of imine-linked COF materials were synthesized by the solvothermal method via introducing functional groups to modify and construct a donor-acceptor (D-A) structure, and selecting aldehydes containing bithiophene groups as the main active monomer and three different nitrogen-containing functional monomers. Through testing, characterization, and comparison of the three materials, the effectiveness of the structural design method in improving the electrochromic and electrochemical properties of COFs has been proven. Finally, we discussed the current challenges that COF materials faced and explored their potential applications in other areas.
Collapse
Affiliation(s)
- Jiaxue Hou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Huanyu Tan
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Min Chen
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Juan Wu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Yukun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xicheng Lu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Yongxin Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xiaoqin Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Chunxia Hua
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Jia Chu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Ming Gong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Shanxin Xiong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China.
| |
Collapse
|
2
|
Dong R, Yang M, Zuo Y, Liang L, Xing H, Duan X, Chen S. Conducting Polymers-Based Gas Sensors: Principles, Materials, and Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2724. [PMID: 40363162 PMCID: PMC12074347 DOI: 10.3390/s25092724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Conducting polymers (CPs) have emerged as promising materials for gas sensors due to their organic nature coupled with unique and versatile optical, electrical, chemical, and electrochemical properties. This review provides a comprehensive overview of the latest developments in conducting polymer-based gas sensors. First, the fundamental gas sensing mechanisms in CPs-based sensors are elucidated, covering diverse transduction modes including electrochemical, chemiresistive, optical, piezoelectric, and field-effect transistor-based sensing. Next, the various types of conducting polymers employed in gas sensors, such as polypyrrole, polyaniline, polythiophene, and their composites are introduced, with emphasis on their synthesis methods, structural characteristics, and gas sensing response properties. Finally, the wide range of applications of these sensors is discussed, spanning industrial process control, environmental monitoring, food safety, biomedical diagnosis, and other fields, as well as existing issues such as long-term stability and humidity interference, and a summary of the biocompatibility and regulatory standards of these conductive polymers is provided. By integrating insights from sensing mechanisms, materials, and applications, this review offers a holistic understanding of CPs-based gas sensors. It also highlights future research directions, including device miniaturization, AI-assisted gas identification, multifunctional integrated sensing systems, wearable and flexible sensor platforms, and enhanced sensitivity, selectivity, and on-site detection capabilities.
Collapse
Affiliation(s)
- Rongqing Dong
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (R.D.); (M.Y.); (L.L.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
| | - Mingna Yang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (R.D.); (M.Y.); (L.L.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
| | - Yinxiu Zuo
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
| | - Lishan Liang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (R.D.); (M.Y.); (L.L.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
| | - Huakun Xing
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
- Institute of Energy Materials and Nanotechnology, School of Civil Engineering and Architecture, Nanchang Jiaotong Institute, Nanchang 330100, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Shuai Chen
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (R.D.); (M.Y.); (L.L.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (H.X.); (X.D.)
| |
Collapse
|
3
|
Pan Y, Zhang J, Guo X, Li Y, Li L, Pan L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1597. [PMID: 38891543 PMCID: PMC11174834 DOI: 10.3390/polym16111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Electrochemical sensors play a pivotal role in various fields, such as biomedicine and environmental detection, due to their exceptional sensitivity, selectivity, stability, rapid response time, user-friendly operation, and ease of miniaturization and integration. In addition to the research conducted in the application field, significant focus is placed on the selection and optimization of electrode interface materials for electrochemical sensors. The detection performance of these sensors can be significantly enhanced by modifying the interface of either inorganic metal electrodes or printed electrodes. Among numerous available modification materials, conductive polymers (CPs) possess not only excellent conductivity exhibited by inorganic conductors but also unique three-dimensional structural characteristics inherent to polymers. This distinctive combination allows CPs to increase active sites during the detection process while providing channels for rapid ion transmission and facilitating efficient electron transfer during reaction processes. This review article primarily highlights recent research progress concerning CPs as an ideal choice for modifying electrochemical sensors owing to their remarkable features that make them well-suited for biomedical and environmental applications.
Collapse
Affiliation(s)
- Youheng Pan
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yarou Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lanlan Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Aydın EB, Aydın M, Sezgintürk MK. Label-Free Electrochemical Immunosensor Based on Conjugated Polymer Film Coated Disposable Electrode for Ultrasensitive Determination of Resistin Potential Obesity Biomarker. ACS APPLIED BIO MATERIALS 2024; 7:1820-1830. [PMID: 38395746 PMCID: PMC10952011 DOI: 10.1021/acsabm.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
A new label-free immunosensor was designed for sensitive detection of resistin obesity biomarker in human biological fluids. To construct a sensing interface, the monomer of double epoxy groups-substituted thiophene (TdiEpx) was synthesized for the fabrication of the biosensing system. A disposable indium tin oxide sheet was first modified by electrochemical polymerization of the TdiEpx monomer, and this robust and novel surface was characterized using different spectroscopic and electrochemical analyses. The double epoxy ends were linked to the amino ends of anti-resistin, and they served as binding points for the covalent binding of biomolecules. The double epoxy ends present in each TdiEpx monomer ensured an extensive surface area, which improved the quantity of attached anti-resistin. The determination of resistin antigen was based on the specific coupling of resistin with anti-resistin, and this interaction hindered the electron transfer reaction. The immunosensor introduced a wide linear range of 0.0125-15 pg/mL, a low detection limit of 4.17 fg/mL, and an excellent sensitivity of 1.38 kohm pg mL-1 cm2. In this study, a sandwich enzyme-linked immunosorbent assay spectrophotometric method was utilized as a reference technique for the quantitative analysis of resistin in human serum and saliva samples. Both measurements in clinical samples displayed correlations and high-correlation coefficients. In addition, this immunosensor had good storage stability, acceptable repeatability and reproducibility, high specificity, and good accuracy. The proposed immunosensor provided a simple and versatile impedimetric immunosensing platform and a promisingly sensitive way for clinical applications.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific
and Technological Research Center, Tekirdaǧ
Namık Kemal University, Tekirdaǧ, Turkey 59030
| | - Muhammet Aydın
- Scientific
and Technological Research Center, Tekirdaǧ
Namık Kemal University, Tekirdaǧ, Turkey 59030
| | - Mustafa Kemal Sezgintürk
- Bioengineering
Department, Faculty of Engineering, Çanakkale
Onsekiz Mart University, Çanakkale, Turkey 17100
| |
Collapse
|
5
|
Mazumder K, Voit B, Banerjee S. Recent Progress in Sulfur-Containing High Refractive Index Polymers for Optical Applications. ACS OMEGA 2024; 9:6253-6279. [PMID: 38371831 PMCID: PMC10870412 DOI: 10.1021/acsomega.3c08571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
The development in the field of high refractive index materials is a crucial factor for the advancement of optical devices with advanced features such as image sensors, optical data storage, antireflective coatings, light-emitting diodes, and nanoimprinting. Sulfur plays an important role in high refractive index applications owing to its high molar refraction compared to carbon. Sulfur exists in multiple oxidation states and can exhibit various stable functional groups. Over the last few decades, sulfur-containing polymers have attracted much attention owing to their wide array of applications governed by the functional group of sulfur present in the polymer repeat unit. The interplay of refractive index and various other polymer properties contributes to successfully implementing a specific polymer material in optical applications. The focus on developing optoelectronic devices induced an ever-increasing need to integrate different functional materials to achieve the devices' full potential. Several devices that see the potential use of sulfur in high refractive index materials are reviewed in the study. Like sulfur, selenium also exhibits high molar refraction and unique chemical properties, making it an essential field of study. This review covers the research and development in the field of sulfur and selenium in different forms of functionality, focusing on the chemistry of bonding and the optical properties of the polymers containing the heteroatoms mentioned above. The strategy and rationale behind incorporating heteroatoms in a polymer matrix to produce high-refractive-index materials are also described in the present review.
Collapse
Affiliation(s)
- Kajari Mazumder
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Ren Z, Xu G, Wang B, Song S, Hao T, Liu D, Zhang Y, Zhao J, Zhang L, Li Y. Polyaniline-Based Infrared Dynamic Patterned Encoder with Multiple Thermal Radiation Characteristics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884015 DOI: 10.1021/acsami.2c19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A high-level infrared dynamic patterned encoder (IR-DPE) possesses prospective applications for energy-harvesting and information, but a simple and reliable method for fabrication remains challenging. Herein, we first report an IR-DPE with multiple thermal radiation characteristics based on polyaniline (PANI). Specifically, the electron-beam evaporation technique is introduced to obtain the divanadium pentoxide (V2O5) coating, and then the V2O5 film acts as an oxidant to drive in situ polymerization of the PANI film. During the process, we experimentally explore the relationship between the thickness of V2O5 and the emissivity of PANI to obtain up to six emissivity levels and achieve the IR pattern integrated into multiple thermal radiation characteristics. The device shows multiple thermal radiation characteristics at the oxidized state, realizing a pattern visible with the IR camera and the same thermal radiation properties at the reduced state, leading to the pattern concealed in the IR regime. In addition, the highest emissivity tunability of the device is to be tuned from 0.40 to 0.82 (Δε = 0.42) at 2.5-25 μm. Meanwhile, the device exhibits a maximum temperature control of up to 5.9 °C. The results show the enormous potential of IR-DPEs for IR information transfer and thermal management.
Collapse
Affiliation(s)
- Zichen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Gaoping Xu
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Bo Wang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shanshan Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tingting Hao
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dongqi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yike Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Leipeng Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
7
|
Alhashmi Alamer F, Althagafy K, Alsalmi O, Aldeih A, Alotaiby H, Althebaiti M, Alghamdi H, Alotibi N, Saeedi A, Zabarmawi Y, Hawsawi M, Alnefaie MA. Review on PEDOT:PSS-Based Conductive Fabric. ACS OMEGA 2022; 7:35371-35386. [PMID: 36249401 PMCID: PMC9557891 DOI: 10.1021/acsomega.2c01834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/27/2022] [Indexed: 06/01/2023]
Abstract
This article reviews conductive fabrics made with the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), their fabrication techniques, and their applications. PEDOT:PSS has attracted interest in smart textile technology due to its relatively high electrical conductivity, water dispersibility, ease of manufacturing, environmental stability, and commercial availability. Several methods apply PEDOT:PSS to textiles. They include polymerization of the monomer, coating, dyeing, and printing methods. In addition, several studies have shown the conductivity of fabrics with the addition of PEDOT:PSS. The electrical properties of conductive textiles with a certain sheet resistance can be reduced by several orders of magnitude using PEDOT:PSS and polar solvents as secondary dopants. In addition, several studies have shown that the flexibility and durability of textiles coated with PEDOT:PSS can be improved by creating a composite with other polymers, such as polyurethane, which has high flexibility and extensibility. This improvement is due to the stronger bonding of PEDOT:PSS to the fabrics. Sensors, actuators, antennas, interconnectors, energy harvesting, and storage devices have been developed with PEDOT:PSS-based conductive fabrics.
Collapse
Affiliation(s)
- Fahad Alhashmi Alamer
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Khalid Althagafy
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Omar Alsalmi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Asal Aldeih
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Hissah Alotaiby
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Manal Althebaiti
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Haifa Alghamdi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Najlaa Alotibi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Ahmad Saeedi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Yusra Zabarmawi
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Mohammed Hawsawi
- Department
of Chemistry, Faculty of Applied
Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Modhi A. Alnefaie
- Department
of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
- Department
of Physics, College of Sciences and Arts, Shaqra University, Sajiir, Riyadh 17649, Saudi Arabia
| |
Collapse
|
8
|
Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers (Basel) 2022; 14:polym14183730. [PMID: 36145876 PMCID: PMC9504310 DOI: 10.3390/polym14183730] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible sensing devices have attracted significant attention for various applications, such as medical devices, environmental monitoring, and healthcare. Numerous materials have been used to fabricate flexible sensing devices and improve their sensing performance in terms of their electrical and mechanical properties. Among the studied materials, conductive polymers are promising candidates for next-generation flexible, stretchable, and wearable electronic devices because of their outstanding characteristics, such as flexibility, light weight, and non-toxicity. Understanding the interesting properties of conductive polymers and the solution-based deposition processes and patterning technologies used for conductive polymer device fabrication is necessary to develop appropriate and highly effective flexible sensors. The present review provides scientific evidence for promising strategies for fabricating conductive polymer-based flexible sensors. Specifically, the outstanding nature of the structures, conductivity, and synthesis methods of some of the main conductive polymers are discussed. Furthermore, conventional and innovative technologies for preparing conductive polymer thin films in flexible sensors are identified and evaluated, as are the potential applications of these sensors in environmental and human health monitoring.
Collapse
|
9
|
Chen R, He H, Hong XZ, Le Q, Sun K, Ouyang J. PEDOT:PSS as Stretchable Conductors with Good Wettability on the Substrate through the Simultaneous Plasticization and Secondary Doping with a Cationic or Anionic Surfactant. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Hao He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xian Zheng Hong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Qiujian Le
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Kuan Sun
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| |
Collapse
|
10
|
Nanocomposites of Fe(II)-Based Metallo-Supramolecular Polymer and a Layered Inorganic–Organic Hybrid for Improved Electrochromic Materials. Polymers (Basel) 2022; 14:polym14050915. [PMID: 35267738 PMCID: PMC8912828 DOI: 10.3390/polym14050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Fe-based metallo-supramolecular polymer (polyFe), composed of Fe(II) ions and bis(terpyridyl)benzene, is known as a good electrochromic (EC) material. For the first time, to improve the EC properties, we prepared nanocomposites comprising polyFe and a layered inorganic–imidazoline covalently bonded hybrid (LIIm) by simply mixing them in methanol and then examined the effect of the nanocomposition on EC properties. The obtained blue/purple-colored composites (polyFe/LIIm composites) were demonstrated by scanning electron microscopy (SEM) to comprise a structure of LIIm nanoparticles coated with amorphous polyFe. Interestingly, X-ray diffraction (XRD) measurements suggested that there was no intercalation of polyFe in the interlayer space of LIIm. Ultraviolet-visible (UV-vis) spectroscopy measurements demonstrated that light absorption close to 600 nm was attributed to metal-to-ligand charge transfer (MLCT) from the Fe(II) ion to the bisterpyridine ligand and was influenced by LIIm in the composites. The composites exhibited a pair of redox waves, assigned to the redox between Fe(II) and Fe(III), in the cyclic voltammograms; moreover, the composites were estimated to be diffusion controlled. Thin composite films demonstrated reversible EC changes, triggered by the redox reaction of the metal. Furthermore, the results show that the nano-scale composition of the metallo-supramolecular polymers with LIIm can effectively improve the memory properties without reducing the contrast in transmittance (ΔT) of 70–76% in EC changes after applying 1.2 V vs. Ag/Ag+. The EC properties varied with varying ratios (3/0.1, 0.5, 1, and 5) of the polyFe/LIIm, and the ratio of 3/1 exhibited the longest memory and largest MLCT absorption peak among composites. The results show that the polyFe/LIIm composites are useful EC materials for dimming glass applications, such as smart windows.
Collapse
|
11
|
Wu P, Wei C, Yang W, Lin L, Pei W, Wang J, Jiang L. Rewritable PEDOT Film Based on Water-Writing and Electroerasing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41220-41230. [PMID: 34410101 DOI: 10.1021/acsami.1c09531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rewritable paper has greatly promoted the sustainable development of society. However, the hydrophilicity/lipophilicity of the poly(3,4-ethylenedioxythiophene) (PEDOT) film limits its application as the rewritable paper. Herein, we constructed a repeatable writing/erasing pattern on a PEDOT film (rewritable PEDOT paper) by combining wettability control, water-induced dedoping, and an electrochemical redox reaction. The treatment with a medium-polarity/high-volatility solvent (MP/HVS) adjusted the wettability of the PEDOT film (water contact angle increased from 6.5° to 146.2°), contributing to the formation of a hydrophobic writable substrate. The treatment with a high-polarity solvent (HPS) induced the dedoping of anions in the PEDOT chain, resulting in the film's color changed from blue to purple and serving as a writing process. The intrinsic electrochemical redox (elimination of color change by doping/dedoping of lithium ions in the PEDOT chain) of the PEDOT film enabled the erasing process. This writing/erasing process can be repeated at least 10 times. The patterned PEDOT film maintained excellent stability to standing diverse solvents (low-polarity solvent (LPS) and MP/HVS), high temperatures (350 °C), and irradiation of different light wavelengths (wavelengths of 365, 380, 460, 520, and 645 nm). Additionally, the conductivity of the PEDOT film was quantitatively measured (impedance: LPS, increased 8.84%; MP/HVS, decreased 6.67%; and HPS, increased 27.97%) by fabricating a micropatterned PEDOT electrode. This work will provide a method for the fabrication of PEDOT-based optoelectronic functional materials.
Collapse
Affiliation(s)
- Pingping Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunrong Wei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Wenjie Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wu P, Wang J, Jiang L. Multi-solvent large stopband monitoring based on the insolubility/superoleophilicity of PEDOT inverse opals. NANOSCALE ADVANCES 2021; 3:4519-4527. [PMID: 34355120 PMCID: PMC8315103 DOI: 10.1039/d1na00301a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Monitoring and post-processing of organic solvents are important for environmental protection. Challenges remain in the development of a universal material which can detect any solvent with a large stopband shift and show excellent stability. Herein, we demonstrate a poly 3,4-ethylenedioxythiophene inverse opal (PEDOT-IO) with a large stopband shift toward various solvents based on the insolubility/superoleophilicity properties. The PEDOT-IO film was fabricated by the potentiostatic polymerization of 3,4-ethylene dioxythiophene using a three-electrode system, infiltrating the interstices of the photonic crystal template with PEDOT and subsequently removing the template. The surface of the PEDOT-IO film presented a composite structure: interconnected pores and hollow shells. When the solvent was introduced into the voids of PEDOT-IO film, the effective refractive index (n) of the whole sample increased due to the replacement of air with the solvent, and the pores and hollow shells showed different degrees of swelling. The synergistic effect of increased n and volume expansion contributed to a large redshift of the stopband of the PEDOT-IO film. PEDOT-IO film exhibited excellent resistance to various solvents and high/low temperature. This work further enriches the application of conductive polymers in solvent-responsive PC sensors and provides a novel means of creating PC-based optical materials and devices.
Collapse
Affiliation(s)
- Pingping Wu
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jingxia Wang
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Sierra-Padilla A, García-Guzmán JJ, López-Iglesias D, Palacios-Santander JM, Cubillana-Aguilera L. E-Tongues/Noses Based on Conducting Polymers and Composite Materials: Expanding the Possibilities in Complex Analytical Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4976. [PMID: 34372213 PMCID: PMC8347095 DOI: 10.3390/s21154976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/14/2023]
Abstract
Conducting polymers (CPs) are extensively studied due to their high versatility and electrical properties, as well as their high environmental stability. Based on the above, their applications as electronic devices are promoted and constitute an interesting matter of research. This review summarizes their application in common electronic devices and their implementation in electronic tongues and noses systems (E-tongues and E-noses, respectively). The monitoring of diverse factors with these devices by multivariate calibration methods for different applications is also included. Lastly, a critical discussion about the enclosed analytical potential of several conducting polymer-based devices in electronic systems reported in literature will be offered.
Collapse
Affiliation(s)
- Alfonso Sierra-Padilla
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| | - Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Cadiz, Spain;
| | - David López-Iglesias
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| | - José María Palacios-Santander
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| | - Laura Cubillana-Aguilera
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| |
Collapse
|