1
|
Visan AI, Negut I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025; 11:72. [PMID: 39852043 PMCID: PMC11765053 DOI: 10.3390/gels11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability. The incorporation of nanoparticles and bio-based polymers further improves their structural integrity and pollutant removal efficiency. Key mechanisms such as adsorption, ion exchange, and photodegradation are discussed, emphasizing their roles in removing heavy metals, dyes, and organic pollutants from wastewater. Additionally, this review presents the potential of hydrogels for oil-water separation, pathogen control, and future sustainability through integration into circular economy frameworks. The adaptability, cost-effectiveness, and eco-friendliness of these hydrogels make them promising candidates for large-scale environmental remediation.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| |
Collapse
|
2
|
Patkar SS, Wang B, Mosquera AM, Kiick KL. Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials. Chemistry 2024; 30:e202400582. [PMID: 38501912 PMCID: PMC11661552 DOI: 10.1002/chem.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Ana Maria Mosquera
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
3
|
Dranseike D, Ota Y, Edwardson TGW, Guzzi EA, Hori M, Nakic ZR, Deshmukh DV, Levasseur MD, Mattli K, Tringides CM, Zhou J, Hilvert D, Peters C, Tibbitt MW. Designed modular protein hydrogels for biofabrication. Acta Biomater 2024; 177:107-117. [PMID: 38382830 DOI: 10.1016/j.actbio.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.
Collapse
Affiliation(s)
- Dalia Dranseike
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Yusuke Ota
- Organic Chemistry Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Elia A Guzzi
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Mao Hori
- Organic Chemistry Laboratory, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Kevin Mattli
- Biosystems Technology, ZHAW, Wädenswil, Switzerland
| | | | - Jiangtao Zhou
- Laboratory of Food and Soft Materials, ETH Zurich, Switzerland
| | - Donald Hilvert
- Organic Chemistry Laboratory, ETH Zurich, Zurich, Switzerland.
| | | | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Graham JJ, Keten S. Increase in Charge and Density Improves the Strength and Toughness of Mussel Foot Protein 5 Inspired Protein Materials. ACS Biomater Sci Eng 2023; 9:4662-4672. [PMID: 37417954 DOI: 10.1021/acsbiomaterials.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Mussel foot protein 5 (fp5) found in the adhesive byssal plaque of Mediterranean mussel Mytilus galloprovincialis exhibits exceptional underwater adhesion to diverse surfaces to the extent that adhesion strength typically exceeds the cohesive strength of the plaque. While sequence effects such as presence of charged residues, metal ion coordination, and high catechol content have been identified to govern fp5's interaction with surfaces, molecular contributors to its cohesive strength remain to be fully understood. Addressing this issue is critical for designing mussel-inspired sequences for new adhesives and biomaterials enabled by synthetic biology. Here we carry out all-atom molecular dynamics simulations on hydrated model fp5 biopolymer melts to understand how sequence features such as tyrosine and charge content affect packing density and inter-residue and ionic interaction strengths and consequently influence the cohesive strength and toughness. Systematic serine (S) substitutions for lysine (K), arginine (R) and tyrosine (Y) residues reveal that Y to S substitution surprisingly results in improvement of cohesive strength due to densification of the material by removal of steric hindrances, whereas the removal of charge in K and R to S substitutions has a detrimental impact on strength and toughness as it reduces cohesive interactions facilitated by electrostatic interactions. Additionally, melts formed from split fp5 sequences with only C or N terminal halves show distinct mechanical responses that further illustrate the role of charge. Our findings provide new insights for designing materials that could potentially surpass the performance of existing biomolecular and bioinspired adhesives, specifically by tailoring sequences for balancing charge and excluded volume effects.
Collapse
Affiliation(s)
- Jacob J Graham
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northwestern University, Department of Civil and Environmental Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Xue B, Bashir Z, Guo Y, Yu W, Sun W, Li Y, Zhang Y, Qin M, Wang W, Cao Y. Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres. Nat Commun 2023; 14:2583. [PMID: 37142590 PMCID: PMC10160100 DOI: 10.1038/s41467-023-38280-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Hydrogels are promising soft materials as tissue engineering scaffolds, stretchable sensors, and soft robotics. Yet, it remains challenging to develop synthetic hydrogels with mechanical stability and durability similar to those of the connective tissues. Many of the necessary mechanical properties, such as high strength, high toughness, rapid recovery, and high fatigue resistance, generally cannot be established together using conventional polymer networks. Here we present a type of hydrogels comprising hierarchical structures of picot fibres made of copper-bound self-assembling peptide strands with zipped flexible hidden length. The redundant hidden lengths allow the fibres to be extended to dissipate mechanical load without reducing network connectivity, making the hydrogels robust against damage. The hydrogels possess high strength, good toughness, high fatigue threshold, and rapid recovery, comparable to or even outperforming those of articular cartilage. Our study highlights the unique possibility of tailoring hydrogel network structures at the molecular level to improve their mechanical performance.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zoobia Bashir
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yachong Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Wenting Yu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Wenxu Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yiyang Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Brown CP, Hughes MDG, Mahmoudi N, Brockwell DJ, Coletta PL, Peyman S, Evans SD, Dougan L. Structural and mechanical properties of folded protein hydrogels with embedded microbubbles. Biomater Sci 2023; 11:2726-2737. [PMID: 36815670 PMCID: PMC10088474 DOI: 10.1039/d2bm01918c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Globular folded proteins are powerful building blocks to create biomaterials with mechanical robustness and inherent biological functionality. Here we explore their potential as advanced drug delivery scaffolds, by embedding microbubbles (MBs) within a photo-activated, chemically cross-linked bovine serum albumin (BSA) protein network. Using a combination of circular dichroism (CD), rheology, small angle neutron scattering (SANS) and microscopy we determine the nanoscale and mesoscale structure and mechanics of this novel multi-composite system. Optical and confocal microscopy confirms the presence of MBs within the protein hydrogel, their reduced diffusion and their effective rupture using ultrasound, a requirement for burst drug release. CD confirms that the inclusion of MBs does not impact the proportion of folded proteins within the cross-linked protein network. Rheological characterisation demonstrates that the mechanics of the BSA hydrogels is reduced in the presence of MBs. Furthermore, SANS reveals that embedding MBs in the protein hydrogel network results in a smaller number of clusters that are larger in size (∼16.6% reduction in number of clusters, 17.4% increase in cluster size). Taken together, we show that MBs can be successfully embedded within a folded protein network and ruptured upon application of ultrasound. The fundamental insight into the impact of embedded MBs in protein scaffolds at the nanoscale and mesoscale is important in the development of future platforms for targeted and controlled drug delivery applications.
Collapse
Affiliation(s)
- Christa P Brown
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sally Peyman
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Blažic R, Marušić K, Vidović E. Swelling and Viscoelastic Properties of Cellulose-Based Hydrogels Prepared by Free Radical Polymerization of Dimethylaminoethyl Methacrylate in Cellulose Solution. Gels 2023; 9:94. [PMID: 36826264 PMCID: PMC9956197 DOI: 10.3390/gels9020094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution. The grafting and crosslinking efficiency in the material have been increased by subsequent irradiation of the samples with ionizing radiation (doses of 10, 30, or 100 kGy). The relative amount of poly(dimethylaminoethyl methacrylate) in the prepared hydrogels was determined by infrared spectroscopy. The swelling behavior of the hydrogels was studied thoroughly, including microgelation extent, equilibrium swelling, and reswelling degree, as well as the dependence on the gelation procedure. The dynamic viscoelastic behavior of prepared hydrogels was also studied. The tan δ values indicate a solid-like behavior while the obtained hydrogels have a complex modulus in the range of 14-39 kPa, which is suitable for hydrogels used in biomedical applications. In addition, the incorporation of Ag particles and the adsorption of Fe3+ ions were tested to evaluate the additional functionalities of the prepared hydrogels. It was found that the introduction of PDMAEMA to the hydrogels enhanced their ability to synthesize Ag particles and absorb Fe3+ ions, providing a platform for the potential preparation of hydrogels for the treatment of wounds.
Collapse
Affiliation(s)
- Roko Blažic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Katarina Marušić
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Elvira Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Clarke BR, Kim H, Ilton M, Watkins JJ, Crosby AJ, Tew GN. The Impact of Polymerization Chemistry on the Mechanical Properties of Poly(dimethylsiloxane) Bottlebrush Elastomers. Macromolecules 2022. [PMID: 37502106 PMCID: PMC10373355 DOI: 10.1021/acs.macromol.2c01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compare the low-strain mechanical properties of bottlebrush elastomers (BBEs) synthesized using ring-opening metathesis and free radical polymerization. Through comparison of experimentally measured elastic moduli and those predicted by an ideal, affine model, we evaluate the efficiency of our networks in forming stress-supporting strands. This comparison allowed us to develop a structural efficiency ratio that facilitates the prediction of mechanical properties relative to polymerization chemistry (e.g., softer BBEs when polymerizing under dilute conditions). This work highlights the impact that polymerization chemistry has on the structural efficiency ratio and the resultant mechanical properties of BBEs with identical side chains, providing another "knob" by which to control polymer network properties.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hyemin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, California 91711, United States
| | - James J. Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Cao N, Zhao Y, Chen H, Huang J, Yu M, Bao Y, Wang D, Cui S. Poly(ethylene glycol) Becomes a Supra-Polyelectrolyte by Capturing Hydronium Ions in Water. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nanpu Cao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinying Huang
- School of Optoelectronic Science, Changchun College of Electronic Technology, Changchun 130114, China
| | - Miao Yu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Bao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shuxun Cui
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
11
|
Li H. There Is Plenty of Room in The Folded Globular Proteins: Tandem Modular Elastomeric Proteins Offer New Opportunities in Engineering Protein‐Based Biomaterials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongbin Li
- Department of Chemistry University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|