1
|
Wakako S, Hori Y, Kinoshita T, Saiki T, Qi X, Hasegawa K, Imai Y, Mori T, Nakagawa K, Fukuhara G. Pressure-Responsive Polymer Chemosensors for Hydrostatic-Pressure-Signal Detection: Poly-l-Lysine-Pyrene Conjugates. ACS Macro Lett 2023; 12:1389-1395. [PMID: 37782005 DOI: 10.1021/acsmacrolett.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Stimulus-responsive polymer materials are an attractive alternative to conventional supramolecular and polymer assemblies for applications in sensing, imaging, and drug-delivery systems. Herein, we synthesized a series of pyrene-labeled α- and ε-poly-l-lysine conjugates with varying degrees of substitution (DSs). Hydrostatic-pressure-UV/vis, fluorescence, and excitation spectroscopies and fluorescence lifetime measurements revealed ground-state conformers and excited-state ensembles emitting fluorescence with variable intensities. The polylysine-based chemosensors demonstrated diverse ratiometric responses to hydrostatic pressure through adjustments in polar solvents, DSs, and polymer backbones. Additionally, the fluorescence chemosensor exhibited a promising glum value of 3.2 × 10-3, indicating potential applications in chiral fluorescent materials. This study offers valuable insights into the development of smart hydrostatic-pressure-responsive polymer materials.
Collapse
Affiliation(s)
- Soshi Wakako
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yumiko Hori
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomokazu Kinoshita
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takao Saiki
- Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xinyi Qi
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koki Hasegawa
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
| | - Keiichi Nakagawa
- Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
2
|
Keever JM, Banzon PD, Hales MK, Sargent AL, Allen WE. Association between N-Terminal Pyrenes Stabilizes the Collagen Triple Helix. J Org Chem 2023; 88:11885-11894. [PMID: 37531574 DOI: 10.1021/acs.joc.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Collagen model peptides featuring the fluorophore pyrene at their N-termini have been synthesized, and their thermal denaturation has been examined using circular dichroism (CD) and fluorescence spectroscopies. Flanking the (Pro-Hyp-Gly)7 core of the peptide monomers at positions 1 and/or 23 in the primary sequence, Lys residues were introduced to ensure water solubility. Triple helices derived from such peptides show a broad excimer emission at ∼480 nm, indicative of interaction between the pyrene units. CD experiments show that the fluorophores enhance helix stability primarily through entropic effects. Unfolding temperatures (Tm) increase by up to 7 °C for systems with N-terminal lysine residues and by up to 21 °C for systems in which the first-position Lys is replaced by Ala. Tm values derived from fluorescence measurements (at 50 μM) typically lie within ∼1 °C of those obtained using CD (at 200 μM). Computational modeling in a water continuum using B3LYP-GD3 and M06-2X functionals predicts that face-to-face association of fluorophores can occur while H-bonding within the [(POG)n]3 assembly is retained. Such parallel stacking is consistent with hydrophobically driven stabilization. Labeling collagen peptides with pyrene is a synthetically simple way to promote triple helicity while providing a means to obtain Tm data on relatively dilute samples.
Collapse
Affiliation(s)
- Jared M Keever
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Patrick D Banzon
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Megan K Hales
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Andrew L Sargent
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - William E Allen
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| |
Collapse
|
3
|
Casier R, Duhamel J. Synergetic Effects of Alanine and Glycine in Blob-Based Methods for Predicting Protein Folding Times. J Phys Chem B 2023; 127:1325-1337. [PMID: 36749707 DOI: 10.1021/acs.jpcb.2c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The polypeptide PGlyAlaGlu was prepared with 20 mol % glycine (Gly), 36 mol % d,l-alanine (Ala), and 44 mol % d,l-glutamic acid (Glu) and labeled with the dye 1-pyrenemethylamine to yield a series of Py-PGlyAlaGlu samples. The fluorescence decays of the Py-PGlyAlaGlu samples were analyzed according to the fluorescence blob model (FBM) to obtain the number Nblobexp of amino acids (aa's) encompassed inside the subvolume Vblob of the polypeptide probed by an excited pyrene. An Nblobexp value of 29 (±2) was retrieved for Py-PGlyAlaGlu, which was much larger than for any of the copolypeptide PGlyGlu or PAlaGlu prepared with either Gly and Glu or Ala and Glu, respectively. The continuous increase in Nblobexp with decreasing side chain size (SCS) from 10 aa's for PGlu to 16 aa's for PAlaGlu and 22 aa's for PGlyGlu was used earlier to define the reach of an aa and determine the groups of aa's that could interact with each other along a polypeptide backbone according to their SCS. These groups of aa's, referred to as blobs, led to the implementation of blob-based models (BBM) to predict the folding time τFtheo,BBM of 145 proteins, which was found to match their experimental folding time τFexp with a relatively high 0.71 correlation coefficient. Nevertheless, the much higher Nblobexp value found for Py-PGlyAlaGlu compared to all other pyrene-labeled polypeptides studied to date indicates that the reach of aa's along a polypeptide sequence is affected not only by SCS but also by synergetic effects between different aa's. Following this new insight, a revised BBM was implemented to predict τFtheo,BBM for 195 proteins assuming the existence or absence of synergies to control the interactions between aa's along a polypeptide sequence. Similarly good correlation coefficients of 0.71 and 0.74 were obtained for a direct 1:1 comparison of τFexp and τFtheo,BBM for the 195 proteins without and with synergies, respectively. This result suggests that synergetic effects between different aa's have little effect on τFtheo,BBM predicted from BBM underlying the robustness of this methodology.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Electrostatically induced pKa shifts in oligopeptides: the upshot of neighboring side chains. Amino Acids 2022; 54:277-287. [DOI: 10.1007/s00726-021-03116-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022]
|
5
|
Casier R, Duhamel J. Effects of Glycine on the Local Conformation and Internal Backbone Dynamics of Polypeptides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
6
|
Yuan W, Casier R, Duhamel J. Unfolding of Helical Poly( L-Glutamic Acid) in N, N-Dimethylformamide Probed by Pyrene Excimer Fluorescence (PEF). Polymers (Basel) 2021; 13:polym13111690. [PMID: 34067276 PMCID: PMC8196828 DOI: 10.3390/polym13111690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
The denaturation undergone by α–helical poly(L-glutamic acid) (PLGA) in N,N-dimethylformamide upon addition of guanidine hydrochloride (GdHCl) was characterized by comparing the fluorescence of a series of PLGA constructs randomly labeled with the dye pyrene (Py-PLGA) to that of a series of Py-PDLGA samples prepared from a racemic mixture of D,L-glutamic acid. The process of pyrene excimer formation (PEF) was taken advantage of to probe changes in the conformation of α–helical Py-PLGA. Fluorescence Blob Model (FBM) analysis of the fluorescence decays of the Py-PLGA and Py-PDLGA constructs yielded the average number (<Nblob>) of glutamic acids located inside a blob, which represented the volume probed by an excited pyrenyl label. <Nblob> remained constant for randomly coiled Py-PDLGA but decreased from ~20 to ~10 glutamic acids for the Py-PLGA samples as GdHCl was added to the solution. The decrease in <Nblob> reflected the decrease in the local density of PLGA as the α–helix unraveled in solution. The changes in <Nblob> with GdHCl concentration was used to determine the change in Gibbs energy required to denature the PLGA α–helix in DMF. The relationship between <Nblob> and the local density of macromolecules can now be applied to characterize the conformation of macromolecules in solution.
Collapse
Affiliation(s)
| | | | - Jean Duhamel
- Correspondence: ; Tel.: +1-519-888-4567 (ext. 35916)
| |
Collapse
|
7
|
Casier R, Duhamel J. Blob-Based Predictions of Protein Folding Times from the Amino Acid-Dependent Conformation of Polypeptides in Solution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
8
|
Direct Measure of the Local Concentration of Pyrenyl Groups in Pyrene-Labeled Dendrons Derived from the Rate of Fluorescence Collisional Quenching. Polymers (Basel) 2020; 12:polym12122919. [PMID: 33291456 PMCID: PMC7762123 DOI: 10.3390/polym12122919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The model-free analysis (MFA) was applied to measure the average rate constant (<k>) for pyrene excimer formation (PEF) in a series of pyrene-labeled dendrons referred to as Pyx-G(N), where x (= 2N) is the number of pyrenyl labels born by a dendron of generation N ranging from 1 to 6. <k> was measured in four different solvents, namely tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF), and dimethylsulfoxide (DMSO). <k> was found to increase linearly with increasing local pyrene concentration ([Py]loc), where [Py]loc had been determined mathematically for the Pyx-G(N) dendrons. The slope of each straight line changed with the nature of the solvent and represented kdiff, the bimolecular rate constant for PEF. kdiff depended on the solvent viscosity (η) and the probability (p) for PEF upon encounter between an excited and a ground-state pyrene. In a same solvent, kdiff for the Pyx-G(N) dendrons was about 360 ± 30 times smaller than kdiff obtained for ethyl 4-(1-pyrene)butyrate (PyBE), a pyrene model compound similar to the pyrene derivative used to label the dendrons. The massive decrease in kdiff observed for the Pyx-G(N) samples reflected the massive loss in mobility experienced by the pyrenyl labels after being covalently attached onto a macromolecule compared to freely diffusing PyBE. Interestingly, the kdiff values obtained for the Pyx-G(N) dendrons and the PyBE model compound followed similar trends as a function of solvent, indicating that the difference in behavior between the kdiff values obtained in different solvents were merely due to the changes in the η and p values between the solvents. Normalizing the <k> values obtained with the Pyx-G(N) dendrons by the kdiff values obtained for PyBE in the same solvents accounted for changes in η and p, resulting in a master curve upon plotting <k>/(fdiff × kdiff) as a function of [Py]loc, where fdiff was introduced to account for some pyrene aggregation in the higher generation dendron (Py64-G(6)). This result demonstrates that <k> represents a direct measure of [Py]loc in pyrene-labeled macromolecules.
Collapse
|
9
|
Casier R, Duhamel J. Blob-Based Approach to Estimate the Folding Time of Proteins Supported by Pyrene Excimer Fluorescence Experiments. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Casier R, Duhamel J. The Effect of Amino Acid Size on the Internal Dynamics and Conformational Freedom of Polypeptides. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
11
|
Casier R, Duhamel J. Effect of Structure on Polypeptide Blobs: A Model Study Using Poly(l-lysine). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7980-7990. [PMID: 32585108 DOI: 10.1021/acs.langmuir.0c01347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The conformation of a series of pyrene-labeled poly(l-lysine)s (Py-PLLs) in 60:40 and 90:10 (v/v) acetonitrile:water mixtures was determined by comparing the results obtained from the fluorescence blob model (FBM) analysis of their fluorescence decays with those obtained from molecular mechanics optimizations (MMOs). PLL aggregates formed in both solutions as demonstrated by FRET experiments between naphthalene- and pyrene-labeled PLLs. Addition of an excess of unlabeled PLL allowed the conformational study of isolated Py-PLL embedded in a matrix of unlabeled PLLs. By varying the acetonitrile (ACN) content of the solution from 60 to 90 vol % ACN, Py-PLL was found to undergo a conformational change from a random coil to an α-helix. The conformational change induced an increase in the maximum number of lysines (Nblob) separating two pyrene-labeled lysines that could still form an excimer between an excited- and a ground-state pyrene. Nblob obtained from the FBM analysis increased from 15.2 ± 2.1 to 25.2 ± 1.2 lysines as PLL changed its conformation from a random coil to an α-helix. AFM revealed that the α-helical PLLs organized themselves into structured bundles ∼22 nm in diameter. The FBM analysis of the decays acquired with a solution of aggregated Py-PLLs in a 90:10 ACN:water mixture yielded a larger Nblob value of 36.6 ± 3.4. The increase in Nblob indicated that the Py-PLL constructs could now interact with one another in the helical bundles. This increase in Nblob was then used in conjunction with MMOs to determine an interhelical spacing of 2.9 ± 0.1 nm for Py-PLLs in a bundle. This interhelical spacing resulted in a local density of 0.25 ± 0.01 g·cm-3 for the bundles of PLL α-helices, which was a reasonable density for a protein in solution. This study describes an experimental means to probe the number of amino acids that interact with each other as the conformation of a polypeptide evolves from that of a random coil to that of an α-helix to finally that of a bundle of α-helices.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|