1
|
Ma N, Kosasang S, Berdichevsky EK, Nishiguchi T, Horike S. Functional metal-organic liquids. Chem Sci 2024; 15:7474-7501. [PMID: 38784744 PMCID: PMC11110139 DOI: 10.1039/d4sc01793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
For decades, the study of coordination polymers (CPs) and metal-organic frameworks (MOFs) has been limited primarily to their behavior as crystalline solids. In recent years, there has been increasing evidence that they can undergo reversible crystal-to-liquid transitions. However, their "liquid" states have primarily been considered intermediate states, and their diverse properties and applications of the liquid itself have been overlooked. As we learn from organic polymers, ceramics, and metals, understanding the structures and properties of liquid states is essential for exploring new properties and functions that are not achievable in their crystalline state. This review presents state-of-the-art research on the liquid states of CPs and MOFs while discussing the fundamental concepts involved in controlling them. We consider the different types of crystal-to-liquid transitions found in CPs and MOFs while extending the interpretation toward other functional metal-organic liquids, such as metal-containing ionic liquids and porous liquids, and try to suggest the unique features of CP/MOF liquids. We highlight their potential applications and present an outlook for future opportunities.
Collapse
Affiliation(s)
- Nattapol Ma
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ellan K Berdichevsky
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
2
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
3
|
Mochida T. Organometallic Ionic Liquids Containing Sandwich Complexes: Molecular Design, Physical Properties, and Chemical Reactivities. CHEM REC 2023; 23:e202300041. [PMID: 37010446 DOI: 10.1002/tcr.202300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Indexed: 04/04/2023]
Abstract
Ionic liquids (ILs) are salts with low melting points and are useful as electrolytes and solvents. We have developed ILs containing cationic metal complexes, which form a family of functional liquids that exhibit unique physical properties and chemical reactivities originating from metal complexes. Our study explores the liquid chemistry in the field of coordination chemistry, where solid-state chemistry is currently the main focus. This review describes the molecular design, physical properties, and reactivities of organometallic ILs containing sandwich or half-sandwich complexes. This paper mainly covers stimuli-responsive ILs, whose magnetic properties, solvent polarities, colors, or structures change by the application of external fields, such as light, heat, and magnetic fields, or by reaction with coordinating molecules.
Collapse
Affiliation(s)
- Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
4
|
Sumitani R, Yamanaka M, Mochida T. On-demand gelation of ionic liquids using photoresponsive organometallic gelators. SOFT MATTER 2022; 18:3479-3486. [PMID: 35437552 DOI: 10.1039/d2sm00307d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reversible formation of ionic liquid gels, or ionogels, upon external stimuli could improve their versatility and expand their application scope in electronic, biomedical, and micro-engineering systems. Herein, we developed organometallic compounds that release low-molecular-weight gelators upon photoirradiation, which facilitate the on-demand photogelation of ionic liquids (ILs). The chemical formulae of the gelator-coordinated complexes are [Ru(C5H5)L]X (L = C6H5NHCONHC12H25; X = PF6, B(CN)4). Each of the complexes were ILs that are easy to synthesize and miscible in ILs. By adding a small amount of the complex, various ILs were transformed to gels upon UV photoirradiation. The PF6 salt allowed the photogelation of ILs with coordinating substituents, whereas the B(CN)4 salt allowed the photogelation of non-coordinating ILs, albeit the reaction was slower. These gels underwent the reverse reaction and liquefied back when heated, and the photogelation was repeatable for ILs with coordinating cations.
Collapse
Affiliation(s)
- Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
5
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
7
|
Thermal properties, crystal structures, and photoreactivity of Ru-containing ionic liquids with sulfur-containing substituents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Sumitani R, Mochida T. Switchable ionic conductivity and viscoelasticity of ionogels containing photo- and thermo-responsive organometallic ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Elyasi Z, Ghomi JS, Najafi GR. Ultrasound-Engineered fabrication of immobilized molybdenum complex on Cross-Linked poly (Ionic Liquid) as a new acidic catalyst for the regioselective synthesis of pharmaceutical polysubstituted spiro compounds. ULTRASONICS SONOCHEMISTRY 2021; 75:105614. [PMID: 34111724 PMCID: PMC8193147 DOI: 10.1016/j.ultsonch.2021.105614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 05/16/2023]
Abstract
A novel supported molybdenum complex on cross-linked poly (1-Aminopropyl-3-vinylimidazolium bromide) entrapped cobalt oxide nanoparticles has been successfully fabricated through two different procedures, i.e. ultrasound (US) irradiations (100 W, 40 kHz) and reflux. The efficiency of the two different methods was comparatively investigated on the fundamental properties of proposed catalyst using diverse characterization techniques. Based on the obtained results, the ultrasonication method provides controlled polymerization process; as a result, well connected polymeric network is formed. In addition, the use of ultrasound waves turned out to be able to increase the particles uniformity, specific surface area (from 79.19 to 223.83 m2/g), and the onset thermal degradation temperature (Td) value (from 248 to 400 °C) of the prepared catalyst which intensifies the catalytic efficiency. Besides, US-treated catalyst demonstrated high chemical stability and maintained its cross-linked network after eight cycles recovery, while the cross-linked network of catalyst obtained under silent condition was completely disrupted. Furthermore, the ultrafast multi-step fabrication procedure was performed in less than 6 h under ultrasonic condition while a similar process promoted by a mechanical stirring method came to a conclusion after 5-6 days. Accordingly, the utility of the ultrasound irradiation was proved, and US-treated catalyst was applied for improved synthetic methodology of spiro 1,4-dihydropyridines and spiro pyranopyrazoles through different acidic active sites. Due to the significant synergistic influence between the proposed catalyst and US irradiation, a variety of novel and recognized mono-spiro compounds were fabricated at room temperature in high regioselectivity.
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| | - Javad Safaei Ghomi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran; Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Islamic Republic of Iran.
| | - Gholam Reza Najafi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| |
Collapse
|
10
|
Nie H, Schauser NS, Self JL, Tabassum T, Oh S, Geng Z, Jones SD, Zayas MS, Reynolds VG, Chabinyc ML, Hawker CJ, Han S, Bates CM, Segalman RA, Read de Alaniz J. Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. J Am Chem Soc 2021; 143:1562-1569. [PMID: 33439016 DOI: 10.1021/jacs.0c11894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE-Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H-15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.
Collapse
Affiliation(s)
- Hui Nie
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Jeffrey L Self
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Tarnuma Tabassum
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Saejin Oh
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Seamus D Jones
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Manuel S Zayas
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | - Craig J Hawker
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Christopher M Bates
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Nie H, Schauser NS, Dolinski ND, Geng Z, Oh S, Chabinyc ML, Hawker CJ, Segalman RA, Read de Alaniz J. The role of anions in light-driven conductivity in diarylethene-containing polymeric ionic liquids. Polym Chem 2021. [DOI: 10.1039/d0py01603a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The role of anion character in the photostationary state, magnitude of conductivity, and light-responsive properties of diarylethene-containing polymeric ionic liquids was investigated.
Collapse
Affiliation(s)
- Hui Nie
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Nicole S. Schauser
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Neil D. Dolinski
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Zhishuai Geng
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Saejin Oh
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Michael L. Chabinyc
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
- Materials Department and Materials Research Laboratory
| | - Rachel A. Segalman
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
- Department of Chemical Engineering
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
12
|
Sumitani R, Mochida T. Reversible formation of soft coordination polymers from liquid mixtures of photoreactive organometallic ionic liquid and bridging molecules. SOFT MATTER 2020; 16:9946-9954. [PMID: 33030501 DOI: 10.1039/d0sm01567a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reversible switching of bonding modes in coordination polymers through the application of external stimuli leads to versatile mechanical and electronic functions. However, the exploration of such a system remains a great challenge. In this study, we designed liquid mixtures comprising a photoreactive organometallic ionic liquid and a bridging ligand, which form intermolecular coordination bonds upon photoirradiation. The liquid mixture of an ionic liquid [Ru(C5H5){Ph(CH2)3CN}][(SO2F)2N] (1) and a tridentate ligand N(C2H4CN)3 was transformed into an elastomer of an amorphous coordination polymer upon ultraviolet photoirradiation. By contrast, the photoirradiation of the mixture of 1 and a bidentate ligand NC(CH2)4CN produced a highly viscous liquid comprising coordination-bonded oligomers. In these reactions, photoirradiation causes dissociation of the organometallic cation, followed by the formation of intermolecular coordination bonds via the bridging ligands. The photoproducts underwent reverse reactions thermally. Based on coordination transformation, the ionic conductivity and viscoelasticity of these materials were reversibly controlled by the application of light and heat.
Collapse
Affiliation(s)
- Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan. and Center for Membrane Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
13
|
Thermal properties and crystal structures of ruthenium-containing photoreactive ionic liquids with short substituents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|