1
|
Xiao R, Pal S, Rademacher CP, Chen J, Wang Q, Chen W, Shull KR, Keten S, Wang M. Real-Time Visualization of Single Polymer Conformational Change in the Bulk State during Mechanical Deformation. PHYSICAL REVIEW LETTERS 2025; 134:148101. [PMID: 40279614 DOI: 10.1103/physrevlett.134.148101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/24/2025] [Indexed: 04/27/2025]
Abstract
Although polymers are most often used within bulk materials, investigating their conformations and dynamics has long been a challenging endeavor in this configuration, particularly under external forces. Addressing this, we utilize single-molecule localization microscopy as a powerful imaging tool to visualize bottlebrush poly(n-butyl acrylate) chains in the bulk state under spherical indentation, quantitatively describing changes in behavior of single polymer chains. We compare these experiments to displacement fields determined analytically and confirmed through finite element analysis. This study pioneers visualizing polymer conformational changes in their native environment in situ, offering transformative insights into polymer behavior and dynamics.
Collapse
Affiliation(s)
- Ruiqi Xiao
- Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208, USA
| | - Subhadeep Pal
- Northwestern University, Department of Civil and Environmental Engineering, Evanston, Illinois 60208, USA
| | - Christopher P Rademacher
- Northwestern University, Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - Jie Chen
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois 60208, USA
| | - Qifeng Wang
- Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208, USA
| | - Wei Chen
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois 60208, USA
| | - Kenneth R Shull
- Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208, USA
| | - Sinan Keten
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois 60208, USA
- Northwestern University, Department of Civil and Environmental Engineering, Evanston, Illinois 60208, USA
| | - Muzhou Wang
- Northwestern University, Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| |
Collapse
|
2
|
Andersen NT, Chen JZY. Stretching semiflexible polymers: Gibbs versus Helmholtz ensembles. Phys Rev E 2025; 111:045402. [PMID: 40411090 DOI: 10.1103/physreve.111.045402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/14/2025] [Indexed: 05/26/2025]
Abstract
What differences in behavior can one draw between the measurable quantities in fixed-force and fixed-extension experiments on semiflexible polymers (such as DNA), stretched by applying a force? The marked difference between the two types of experiment, represented by two different scaling curves as a function of a reduced stretching force and reduced extension, is revealed here. Potential regions of the parameter space that could benefit from further experimental investigation are also suggested.
Collapse
Affiliation(s)
- Nigel T Andersen
- University of Waterloo, Department of Physics and Astronomy, Ontario, Canada N2L 3G1
| | - Jeff Z Y Chen
- University of Waterloo, Department of Physics and Astronomy, Ontario, Canada N2L 3G1
| |
Collapse
|
3
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
4
|
Jeon S, Kamble YL, Kang H, Shi J, Wade MA, Patel BB, Pan T, Rogers SA, Sing CE, Guironnet D, Diao Y. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Proc Natl Acad Sci U S A 2024; 121:e2313617121. [PMID: 38377215 PMCID: PMC10907314 DOI: 10.1073/pnas.2313617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.
Collapse
Affiliation(s)
- Sanghyun Jeon
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Haisu Kang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jiachun Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Matthew A. Wade
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Tianyuan Pan
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
5
|
Dutta S, Sing CE. Brownian dynamics simulations of bottlebrush polymers in dilute solution under simple shear and uniaxial extensional flows. J Chem Phys 2024; 160:044901. [PMID: 38258921 DOI: 10.1063/5.0177113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
We study the dynamics of bottlebrush polymer molecules in dilute solutions subjected to shear and uniaxial extensional flows using Brownian dynamics simulations with hydrodynamic interaction (HI). Bottlebrush polymers are modeled using a coarse-grained representation, consisting of a set of beads interacting pairwise via a purely repulsive potential and connected by finitely extensible nonlinear springs. We present the results for molecular stretching, stress, and solution viscosity during the startup of flow as well as under steady state as a function of side chain length while keeping the backbone length fixed. In extensional flow, the backbone fractional extension and the first normal stress difference decrease with an increase in side chain length at a fixed Weissenberg number (Wi). Using simulation results both in the presence of and in the absence of HI, we show that this is primarily a consequence of steric interaction resulting from the dense grafting of side chains. In shear flow, we observe a shear-thinning behavior in all cases, although it becomes less pronounced with increasing side chain length. Furthermore, nonmonotonicity in the backbone fractional extension is observed under shear, particularly at high Wi. We contextualize our simulation results for bottlebrush polymers with respect to existing studies in the literature for linear polymers and show that the unique dynamical features characterizing bottlebrush polymers arise on account of their additional molecular thickness due to the presence of densely grafted side chains.
Collapse
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Hao P, Mai XH, Chen QY, Ding MM. Conformation of an Amphiphilic Comb-like Copolymer in a Selective Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Zhulina EB, Sheiko SS, Borisov OV. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. SOFT MATTER 2022; 18:8714-8732. [PMID: 36373559 DOI: 10.1039/d2sm01141g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei S Sheiko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
9
|
Patel BB, Pan T, Chang Y, Walsh DJ, Kwok JJ, Park KS, Patel K, Guironnet D, Sing CE, Diao Y. Concentration-Driven Self-Assembly of PS- b-PLA Bottlebrush Diblock Copolymers in Solution. ACS POLYMERS AU 2022; 2:232-244. [PMID: 35971423 PMCID: PMC9372993 DOI: 10.1021/acspolymersau.1c00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Bottlebrush polymers
are a class of semiflexible, hierarchical
macromolecules with unique potential for shape-, architecture-, and
composition-based structure–property design. It is now well-established
that in dilute to semidilute solution, bottlebrush homopolymers adopt
a wormlike conformation, which decreases in extension (persistence
length) as the concentration and molecular overlap increase. By comparison,
the solution phase self-assembly of bottlebrush diblock copolymers
(BBCP) in a good solvent remains poorly understood, despite critical
relevance for solution processing of ordered phases and photonic crystals.
In this work, we combine small-angle X-ray scattering, coarse-grained
simulation, and polymer synthesis to map the equilibrium phase behavior
and conformation of a set of large, nearly symmetric PS-b-PLA bottlebrush diblock copolymers in toluene. Three BBCP are synthesized,
with side chains of number-averaged molecular weights of 4500 (PS)
and 4200 g/mol (PLA) and total backbone degrees of polymerization
of 100, 255, and 400 repeat units. The grafting density is one side
chain per backbone repeat unit. With increasing concentration in solution,
all three polymers progress through a similar structural transition:
from dispersed, wormlike chains with concentration-dependent (decreasing)
extension, through the onset of disordered PS/PLA compositional fluctuations,
to the formation of a long-range ordered lamellar phase. With increasing
concentration in the microphase-separated regimes, the domain spacing
increases as individual chains partially re-extend due to block immiscibility.
Increases in the backbone degree of polymerization lead to changes
in the scattering profiles which are consistent with the increased
segregation strength. Coarse-grained simulations using an implicit
side-chain model are performed, and concentration-dependent self-assembly
behavior is qualitatively matched to experiments. Finally, using the
polymer with the largest backbone length, we demonstrate that lamellar
phases develop a well-defined photonic band gap in solution, which
can be tuned across the visible spectrum by varying polymer concentration.
Collapse
Affiliation(s)
- Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Yilong Chang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., MC 244, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin J. Kwok
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Kyung Sun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kush Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Maw M, Morgan BJ, Dashtimoghadam E, Tian Y, Bersenev EA, Maryasevskaya AV, Ivanov DA, Matyjaszewski K, Dobrynin AV, Sheiko SS. Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin J. Morgan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Egor A. Bersenev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
| | - Alina V. Maryasevskaya
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Dimitri A. Ivanov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
- CNRS UMR 7361, Institut de Sciences des Matériaux de Mulhouse, IS2M, 15, rue Jean Starcky, F-68057 Mulhouse, France
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Pan T, Dutta S, Sing CE. Interaction potential for coarse-grained models of bottlebrush polymers. J Chem Phys 2022; 156:014903. [PMID: 34998351 DOI: 10.1063/5.0076507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bottlebrush polymers are a class of highly branched macromolecules that show promise for applications such as self-assembled photonic materials and tunable elastomers. However, computational studies of bottlebrush polymer solutions and melts remain challenging due to the high computational cost involved in explicitly accounting for the presence of side chains. Here, we consider a coarse-grained molecular model of bottlebrush polymers where the side chains are modeled implicitly, with the aim of expediting simulations by accessing longer length and time scales. The key ingredients of this model are the size of a coarse-grained segment and a suitably coarse-grained interaction potential between the non-bonded segments. Prior studies have not focused on developing explicit forms of such potentials, instead, relying on scaling arguments to model non-bonded interactions. Here, we show how to systematically calculate an interaction potential between the coarse-grained segments of bottlebrush from finer grained explicit side chain models using Monte Carlo and Brownian dynamics and then incorporate it into an implicit side chain model. We compare the predictions from our coarse-grained implicit side chain model with those obtained from models with explicit side chains in terms of the potential of mean force, the osmotic second virial coefficient, and the interpenetration function, highlighting the range of applicability and limitations of the coarse-grained representation. Although presented in the context of homopolymer bottlebrushes in athermal solvents, our proposed method can be extended to other solvent conditions as well as to different monomer chemistries. We expect that our implicit side chain model will prove useful for accelerating large-scale simulations of bottlebrush solutions and assembly.
Collapse
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Peterson GI, Noh J, Ha MY, Yang S, Lee WB, Choi TL. Influence of Grafting Density on Ultrasound-Induced Backbone and Arm Scission of Graft Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Pan T, Patel BB, Walsh DJ, Dutta S, Guironnet D, Diao Y, Sing CE. Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|