1
|
Schneck C, Smrek J, Likos CN, Zöttl A. Supercoiled ring polymers under shear flow. NANOSCALE 2024. [PMID: 38639709 DOI: 10.1039/d3nr04258h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We apply monomer-resolved computer simulations of supercoiled ring polymers under shear, taking full account of the hydrodynamic interactions, accompanied, in parallel, by simulations in which these are switched off. The combination of bending and torsional rigidities inherent in these polymers, in conjunction with hydrodynamics, has a profound impact on their flow properties. In contrast to their flexible counterparts, which dramatically deform and inflate under shear [Liebetreu et al., Commun. Mater. 2020, 1, 4], supercoiled rings undergo only weak changes in their overall shape and they display both a reduced propensity to tumbling (at fixed Weissenberg number) and a much stronger orientational resistance with respect to their flexible counterparts. In the presence of hydrodynamic interactions, the coupling of the polymer to solvent flow is capable of bringing about a topological transformation of writhe to twist at strong shear upon conservation of the overall linking number.
Collapse
Affiliation(s)
- Christoph Schneck
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Andreas Zöttl
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Riva S, Banetta L, Zaccone A. Solution to the two-body Smoluchowski equation with shear flow for charge-stabilized colloids at low to moderate Péclet numbers. Phys Rev E 2022; 105:054606. [PMID: 35706254 DOI: 10.1103/physreve.105.054606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We developed an analytical theoretical method to determine the microscopical structure of weakly to moderately sheared colloidal suspensions in dilute conditions. The microstructure is described by the static structure factor, obtained by solving the stationary two-body Smoluchowski advection-diffusion equation. The singularly perturbed partial differential equation problem is solved by performing an angular averaging over the extensional and compressing sectors and by the rigorous application of boundary-layer theory (intermediate asymptotics). This allows us to expand the solution to a higher order in Péclet with respect to previous methods. The scheme is independent of the type of interaction potential. We apply it to the example of charge-stabilized colloidal particles interacting via the repulsive Yukawa potential and study the distortion of the structure factor. It is predicted that the distortion is larger at small wave vectors k and its dependence on Pe is a simple power law. At increasing Pe, the main peak of the structure factor displays a broadening and shift toward lower k in the extensional sectors, which indicates shear-induced spreading out of particle correlations and neighbor particles locally being dragged away from the reference one. In the compressing sectors, instead, a narrowing and shift toward high k is predicted, reflecting shear-induced ordering near contact and concomitant depletion in the medium range. An overall narrowing of the peak is also predicted for the structure factor averaged over the whole solid angle. Calculations are also performed for hard spheres, showing good overall agreement with experimental data. It is also shown that the shear-induced structure factor distortion is orders of magnitude larger for the Yukawa repulsion than for the hard spheres.
Collapse
Affiliation(s)
- Simone Riva
- Department of Physics, A. Pontremoli, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Luca Banetta
- Department of Applied Science and Technology (DISAT), Politecnico of Turin, Italy
| | - Alessio Zaccone
- Department of Physics, A. Pontremoli, University of Milan, Via Celoria 16, 20133 Milan, Italy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
| |
Collapse
|
3
|
Staňo R, Košovan P, Tagliabue A, Holm C. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roman Staňo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell’Insubria, via Valleggio 9, 22100 Como, Italy
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Bačová P, Mintis DG, Gkolfi E, Harmandaris V. Mikto-Arm Stars as Soft-Patchy Particles: From Building Blocks to Mesoscopic Structures. Polymers (Basel) 2021; 13:1114. [PMID: 33915849 PMCID: PMC8037958 DOI: 10.3390/polym13071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/22/2022] Open
Abstract
We present an atomistic molecular dynamics study of self-assembled mikto-arm stars, which resemble patchy-like particles. By increasing the number of stars in the system, we propose a systematic way of examining the mutual orientation of these fully penetrable patchy-like objects. The individual stars maintain their patchy-like morphology when creating a mesoscopic (macromolecular) self-assembled object of more than three stars. The self-assembly of mikto-arm stars does not lead to a deformation of the stars, and their shape remains spherical. We identified characteristic sub-units in the self-assembled structure, differing by the mutual orientation of the nearest neighbor stars. The current work aims to elucidate the possible arrangements of the realistic, fully penetrable patchy particles in polymer matrix and to serve as a model system for further studies of nanostructured materials or all-polymer nanocomposites using the mikto-arm stars as building blocks.
Collapse
Affiliation(s)
- Petra Bačová
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Str., Nicosia 2121, Cyprus; (D.G.M.); (V.H.)
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece;
| | - Dimitris G. Mintis
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Str., Nicosia 2121, Cyprus; (D.G.M.); (V.H.)
| | - Eirini Gkolfi
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece;
- Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Str., Nicosia 2121, Cyprus; (D.G.M.); (V.H.)
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece;
- Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Crete, Greece
| |
Collapse
|
5
|
Formanek M, Moreno AJ. Crowded solutions of single-chain nanoparticles under shear flow. SOFT MATTER 2021; 17:2223-2233. [PMID: 33465214 DOI: 10.1039/d0sm01978j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-chain nanoparticles (SCNPs) are ultrasoft objects obtained through purely intramolecular cross-linking of single polymer chains. By means of computer simulations with implemented hydrodynamic interactions, we investigate for the first time the effect of the shear flow on the structural and dynamic properties of SCNPs in semidilute and concentrated solutions. We characterize the dependence of several conformational and dynamic observables on the shear rate and the concentration, obtaining a set of power-law scaling laws. The concentration has a very different effect on the shear rate dependence of the former observables in SCNPs than in simple linear chains. Whereas for the latter the scaling behaviour is marginally dependent on the concentration, two clearly different scaling regimes are found for the SCNPs below and above the overlap concentration. At fixed shear rate SCNPs and linear chains also respond very differently to crowding. Whereas, at moderate and high Weissenberg numbers the linear chains swell, the SCNPs exhibit a complex non-monotonic behaviour. We suggest that these findings are inherently related to the topological interactions preventing concatenation of the SCNPs, which lead to less interpenetration than for linear chains, and to the limitation to stretching imposed by the permanent cross-links in the SCNPs, which itself limits the ways to spatially arrange in the shear flow.
Collapse
Affiliation(s)
- Maud Formanek
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|