1
|
Arriaga-Dávila J, Rosero-Arias C, Jonker D, Córdova-Castro M, Zscheile J, Kirchner R, Aguirre-Soto A, Boyd R, De Leon I, Gardeniers H, Susarrey-Arce A. From Single to Multi-Material 3D Printing of Glass-Ceramics for Micro-Optics. SMALL METHODS 2025:e2401809. [PMID: 39901648 DOI: 10.1002/smtd.202401809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Feynman's statement, "There is plenty of room at the bottom", underscores vast potential at the atomic scale, envisioning microscopic machines. Today, this vision extends into 3D space, where thousands of atoms and molecules are volumetrically patterned to create light-driven technologies. To fully harness their potential, 3D designs must incorporate high-refractive-index elements with exceptional mechanical and chemical resilience. The frontier, however, lies in creating spatially patterned micro-optical architectures in glass and ceramic materials of dissimilar compositions. This multi-material capability enables novel ways of shaping light, leveraging the interaction between diverse interfaced chemical compositions to push optical boundaries. Specifically, it encompasses both multi-material integration within the same architectures and the use of different materials for distinct architectural features in an optical system. Integrating fluid handling systems with two-photon lithography (TPL) provides a promising approach for rapidly prototyping such complex components. This review examines single and multi-material TPL processes, discussing photoresin customization, essential physico-chemical conditions, and the need for cross-scale characterization to assess optical quality. It reflects on challenges in characterizing multi-scale architectures and outlines advancements in TPL for both single and spatially patterned multi-material structures. The roadmap provides a bridge between research and industry, emphasizing collaboration and contributions to advancing micro-optics.
Collapse
Affiliation(s)
- Joel Arriaga-Dávila
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Cristian Rosero-Arias
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Dirk Jonker
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | | | - Josua Zscheile
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
| | - Robert Kirchner
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Robert Boyd
- Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA
| | - Israel De Leon
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
- ASML Netherlands B.V., De Run 6501, DR Veldhoven, 5504, The Netherlands
| | - Han Gardeniers
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Arturo Susarrey-Arce
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
2
|
Koch T, Zhang W, Tran TT, Wang Y, Mikitisin A, Puchhammer J, Greer JR, Ovsianikov A, Chalupa-Gantner F, Lunzer M. Approaching Standardization: Mechanical Material Testing of Macroscopic Two-Photon Polymerized Specimens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308497. [PMID: 38303404 DOI: 10.1002/adma.202308497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Two-photon polymerization (2PP) is becoming increasingly established as additive manufacturing technology for microfabrication due to its high-resolution and the feasibility of generating complex parts. Until now, the high resolution of 2PP is also its bottleneck, as it limited throughput and therefore restricted the application to the production of microparts. Thus, mechanical properties of 2PP materials can only be characterized using nonstandardized specialized microtesting methods. Due to recent advances in 2PP technology, it is now possible to produce parts in the size of several millimeters to even centimeters, finally permitting the fabrication of macrosized testing specimens. Besides suitable hardware systems, 2PP materials exhibiting favorable mechanical properties that allow printing of up-scaled parts are strongly demanded. In this work, the up-scalability of three different photopolymers is investigated using a high-throughput 2PP system and low numerical aperture optics. Testing specimens in the cm-range are produced and tested with common or even standardized material testing methods available in conventionally equipped polymer testing labs. Examples of the characterization of mechanical, thermo-mechanical, and fracture properties of 2PP processed materials are shown. Additionally, aspects such as postprocessing and aging are investigated. This lays a foundation for future expansion of the 2PP technology to broader industrial application.
Collapse
Affiliation(s)
- Thomas Koch
- Institute of Materials Science and Technology, TU Wien, Vienna, 1060, Austria
| | - Wenxin Zhang
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Thomas T Tran
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yingjin Wang
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Adrian Mikitisin
- Central Facility for Electron Microscopy, RWTH Aachen, 52074, Aachen, Germany
| | - Jakob Puchhammer
- Institute of Materials Science and Technology, TU Wien, Vienna, 1060, Austria
| | - Julia R Greer
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | |
Collapse
|
3
|
Sensitive photoresists for high-speed two--photon lithography. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01518-9. [PMID: 37817012 DOI: 10.1038/s41565-023-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
|
4
|
Liu T, Tao P, Wang X, Wang H, He M, Wang Q, Cui H, Wang J, Tang Y, Tang J, Huang N, Kuang C, Xu H, He X. Ultrahigh-printing-speed photoresists for additive manufacturing. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01517-w. [PMID: 37783856 DOI: 10.1038/s41565-023-01517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Printing technology for precise additive manufacturing at the nanoscale currently relies on two-photon lithography. Although this methodology can overcome the Rayleigh limit to achieve nanoscale structures, it still operates at too slow of a speed for large-scale practical applications. Here we show an extremely sensitive zirconium oxide hybrid-(2,4-bis(trichloromethyl)-6-(4-methoxystyryl)-1,3,5-triazine) (ZrO2-BTMST) photoresist system that can achieve a printing speed of 7.77 m s-1, which is between three and five orders of magnitude faster than conventional polymer-based photoresists. We build a polygon laser scanner-based two-photon lithography machine with a linear stepping speed approaching 10 m s-1. Using the ZrO2-BTMST photoresist, we fabricate a square raster with an area of 1 cm2 in ~33 min. Furthermore, the extremely small chemical components of the ZrO2-BTMST photoresist enable high-precision patterning, leading to a line width as small as 38 nm. Calculations assisted by characterizations reveal that the unusual sensitivity arises from an efficient light-induced polarity change of the ZrO2 hybrid. We envisage that the exceptional sensitivity of our organic-inorganic hybrid photoresist may lead to a viable large-scale additive manufacturing nanofabrication technology.
Collapse
Affiliation(s)
- Tianqi Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Peipei Tao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Xiaolin Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Hongqing Wang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou, P. R. China
| | - Minfei He
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qianqian Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Hao Cui
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China
| | - Jin Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Cuifang Kuang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou, P. R. China.
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China.
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
5
|
Cao C, Shen X, Chen S, He M, Wang H, Ding C, Zhu D, Dong J, Chen H, Huang N, Kuang C, Jin M, Liu X. High-Precision and Rapid Direct Laser Writing Using a Liquid Two-Photon Polymerization Initiator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37316963 DOI: 10.1021/acsami.3c06601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-photon polymerization based direct laser writing (DLW) is an emerging micronano 3D fabrication technology wherein two-photon initiators (TPIs) are a key component in photoresists. Upon exposure to a femtosecond laser, TPIs can trigger the polymerization reaction, leading to the solidification of photoresists. In other words, TPIs directly determine the rate of polymerization, physicochemical properties of polymers, and even the photolithography feature size. However, they generally exhibit extremely poor solubility in photoresist systems, severely inhibiting their application in DLW. To break through this bottleneck, we propose a strategy to prepare TPIs as liquids via molecular design. The maximum weight fraction of the as-prepared liquid TPI in photoresist significantly increases to 2.0 wt %, which is several times higher than that of commercial 7-diethylamino-3-thenoylcoumarin (DETC). Meanwhile, this liquid TPI also exhibits an excellent absorption cross section (64 GM), allowing it to absorb femtosecond laser efficiently and generate abundant active species to initiate polymerization. Remarkably, the respective minimum feature sizes of line arrays and suspended lines are 47 and 20 nm, which are comparable to that of the-state-of-the-art electron beam lithography. Besides, the liquid TPI can be utilized to fabricate various high-quality 3D microstructures and manufacture large-area 2D devices at a considerable writing speed (1.045 m s-1). Therefore, the liquid TPI would be one of the promising initiators for micronano fabrication technology and pave the way for future development of DLW.
Collapse
Affiliation(s)
- Chun Cao
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Xiaoming Shen
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Shixiong Chen
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, P. R. China
| | - Minfei He
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongqing Wang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Chenliang Ding
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Dazhao Zhu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Jianjie Dong
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Hongzheng Chen
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ning Huang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Cuifang Kuang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, P. R. China
| | - Xu Liu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
6
|
Gvindzhiliia G, Sivun D, Naderer C, Jacak J, Klar TA. Low-Fluorescence Starter for Optical 3D Lithography of Sub-40 nm Structures. ACS APPLIED OPTICAL MATERIALS 2023; 1:945-951. [PMID: 37255503 PMCID: PMC10226181 DOI: 10.1021/acsaom.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Stimulated emission depletion (STED) has been used to break the diffraction limit in fluorescence microscopy. Inspired by this success, similar methods were used to reduce the structure size in three-dimensional, subdiffractional optical lithography. So far, only a very limited number of radical polymerization starters proved to be suitable for STED-inspired lithography. In this contribution, we introduce the starter Michler's ethyl ketone (MEK), which has not been used so far for STED-inspired lithography. In contrast to the commonly used 7-diethylamino-3-thenoylcoumarin (DETC), nanostructures written with MEK show low autofluorescence in the visible range. Therefore, MEK is promising for being used as a starter for protein or cell scaffolds in physiological research because the autofluorescence of DETC so far excluded the use of the green emission channel in multicolor fluorescence or confocal microscopy. In turn, because of the weak transitions of MEK in the visible spectrum, STED, in its original sense, cannot be applied to deplete MEK in the outer rim of the point spread function. However, a 660 nm laser can be used for depletion because this wavelength is well within the absorption spectrum of transient states, possibly of triplet states. We show that polymerization can be fully stopped by applying transient state absorption at 660 nm and that structure sizes down to approx. 40 nm in the lateral and axial directions can be achieved, which means 1/20 of the optical wavelength used for writing.
Collapse
Affiliation(s)
- Georgii Gvindzhiliia
- Institute
of Applied Physics, Johannes Kepler University
Linz, 4040 Linz, Austria
| | - Dmitry Sivun
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, 4020 Linz, Austria
| | - Christoph Naderer
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, 4020 Linz, Austria
| | - Jaroslaw Jacak
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, 4020 Linz, Austria
| | - Thomas A. Klar
- Institute
of Applied Physics, Johannes Kepler University
Linz, 4040 Linz, Austria
| |
Collapse
|
7
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
Affiliation(s)
- Seán O'Halloran
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
| | - Abhay Pandit
- CÚRAMthe SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Andreas Heise
- RCSIUniversity of Medicine and Health SciencesDepartment of Chemistry123 St. Stephens GreenDublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI University of Medicine and Health Sciences and Trinity College DublinDublinDublin 2Ireland
- CÚRAMthe SFI Research Centre for Medical DevicesRCSI University of Medicine and Health SciencesDublin and National University of Ireland GalwayGalwayH91 W2TYIreland
| | - Andrew Kellett
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
- SSPCthe SFI Research Centre for PharmaceuticalsDublin City UniversityGlasnevinDublinDublin 9Ireland
| |
Collapse
|
8
|
Domes and semi-capsules as model systems for infrared microspectroscopy of biological cells. Sci Rep 2023; 13:3165. [PMID: 36823297 PMCID: PMC9950083 DOI: 10.1038/s41598-023-30130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
It is well known that infrared microscopy of micrometer sized samples suffers from strong scattering distortions, attributed to Mie scattering. The state-of-the-art preprocessing technique for modelling and removing Mie scattering features from infrared absorbance spectra of biological samples is built on a meta model for perfect spheres. However, non-spherical cell shapes are the norm rather than the exception, and it is therefore highly relevant to evaluate the validity of this preprocessing technique for deformed spherical systems. Addressing these cases, we investigate both numerically and experimentally the absorbance spectra of 3D-printed individual domes, rows of up to five domes, two domes with varying distance, and semi-capsules of varying lengths as model systems of deformed individual cells and small cell clusters. We find that coupling effects between individual domes are small, corroborating previous related literature results for spheres. Further, we point out and illustrate with examples that, while optical reciprocity guarantees the same extinction efficiency for top vs. bottom illumination, a scatterer's internal field may be vastly different in these two situations. Finally, we demonstrate that the ME-EMSC model for preprocessing infrared spectra from spherical biological systems is valid also for deformed spherical systems.
Collapse
|
9
|
Abstract
Visible light powers an ever-expanding suite of reactions to both make and break chemical bonds under otherwise mild conditions. As a reagent in photochemical synthesis, light is obviously critical for reactivity but rarely optimized other than in light/dark controls. This Frontier Article presents an overview of recent research that investigates the unique ways light may be manipulated, and its unusual interactions with homogeneous transition metal and organic photocatalysts.
Collapse
Affiliation(s)
- Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
10
|
Wloka T, Gottschaldt M, Schubert US. From Light to Structure: Photo Initiators for Radical Two-Photon Polymerization. Chemistry 2022; 28:e202104191. [PMID: 35202499 PMCID: PMC9324900 DOI: 10.1002/chem.202104191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/06/2022]
Abstract
Two-photon polymerization (2PP) represents a powerful technique for the fabrication of precise three-dimensional structures on a micro- and nanometer scale for various applications. While many review articles are focusing on the used polymeric materials and their application in 2PP, in this review the class of two-photon photo initiators (2PI) used for radical polymerization is discussed in detail. Because the demand for highly efficient 2PI has increased in the last decades, different approaches in designing new efficient 2PIs occurred. This review summarizes the 2PIs known in literature and discusses their absorption behavior under one- and two-photon absorption (2PA) conditions, their two-photon cross sections (σTPA ) as well as their efficiency under 2PP conditions. Here, the photo initiators are grouped depending on their chromophore system (D-π-A-π-D, D-π-D, etc.). Their polymerization efficiencies are evaluated by fabrication windows (FW) depending on different laser intensities and writing speeds.
Collapse
Affiliation(s)
- Thomas Wloka
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller Universität JenaHumboldtstraße 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 707743JenaGermany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller Universität JenaHumboldtstraße 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 707743JenaGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller Universität JenaHumboldtstraße 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 707743JenaGermany
| |
Collapse
|
11
|
Lunzer M, Beckwith JS, Chalupa-Gantner F, Rosspeintner A, Licari G, Steiger W, Hametner C, Liska R, Fröhlich J, Vauthey E, Ovsianikov A, Holzer B. Beyond the Threshold: A Study of Chalcogenophene-Based Two-Photon Initiators. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:3042-3052. [PMID: 35431440 PMCID: PMC9009090 DOI: 10.1021/acs.chemmater.1c04002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A series of nine soluble, symmetric chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophysical analysis of these molecules revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with commercial photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.
Collapse
Affiliation(s)
- Markus Lunzer
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- Institute
of Materials Science and Technology, TU
Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
- UpNano
GmbH, Modecenterstraße
22/D36, 1030 Vienna, Austria
| | - Joseph S. Beckwith
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | - Arnulf Rosspeintner
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Giuseppe Licari
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Wolfgang Steiger
- Institute
of Materials Science and Technology, TU
Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Christian Hametner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Johannes Fröhlich
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Eric Vauthey
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Aleksandr Ovsianikov
- Institute
of Materials Science and Technology, TU
Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Brigitte Holzer
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
12
|
Fajardo J, Barth AT, Morales M, Takase MK, Winkler JR, Gray HB. Photoredox Catalysis Mediated by Tungsten(0) Arylisocyanides. J Am Chem Soc 2021; 143:19389-19398. [PMID: 34756036 DOI: 10.1021/jacs.1c07617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
W(CNAr)6 (CNAr = arylisocyanide) photoreductants catalyze base-promoted homolytic aromatic substitution (BHAS) of 1-(2-iodobenzyl)-pyrrole in deuterated benzene. Moderate to high efficiencies correlate with W(CNAr)6 excited-state reduction potentials upon one-photon 445 nm excitation, with 10 mol % loading of the most powerful photoreductants W(CNDipp)6 (CNDipp = 2,6-diisopropylphenylisocyanide) and W(CNDippPhOMe3)6 (CNDippPhOMe3 = 4-(3,4,5-trimethoxyphenyl)-2,6-diisopropylphenylisocyanide) affording nearly complete conversion. Stern-Volmer quenching experiments indicated that catalysis is triggered by substrate reductive dehalogenation. Taking advantage of the large two-photon absorption (TPA) cross sections of W(CNAr)6 complexes, we found that photocatalysis can be driven with femtosecond-pulsed 810 nm excitation. For both one- and two-photon excitation, photocatalysis was terminated by the formation of seven-coordinate WII-diiodo [WI2(CNAr)5] complexes. Notably, we discovered that W(CNDipp)6 can be regenerated by chemical reduction of WI2(CNDipp)5 with excess ligand present in solution.
Collapse
Affiliation(s)
- Javier Fajardo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexandra T Barth
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Maryann Morales
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael K Takase
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds. Polymers (Basel) 2021; 13:polym13193385. [PMID: 34641200 PMCID: PMC8512357 DOI: 10.3390/polym13193385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young's modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds' low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.
Collapse
|
14
|
Somers P, Liang Z, Johnson JE, Boudouris BW, Pan L, Xu X. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. LIGHT, SCIENCE & APPLICATIONS 2021; 10:199. [PMID: 34561417 PMCID: PMC8463698 DOI: 10.1038/s41377-021-00645-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 05/27/2023]
Abstract
There is demand for scaling up 3D printing throughput, especially for the multi-photon 3D printing process that provides sub-micrometer structuring capabilities required in diverse fields. In this work, high-speed projection multi-photon printing is combined with spatiotemporal focusing for fabrication of 3D structures in a rapid, layer-by-layer, and continuous manner. Spatiotemporal focusing confines printing to thin layers, thereby achieving print thicknesses on the micron and sub-micron scale. Through projection of dynamically varying patterns with no pause between patterns, a continuous fabrication process is established. A numerical model for computing spatiotemporal focusing and imaging is also presented which is verified by optical imaging and printing results. Complex 3D structures with smooth features are fabricated, with millimeter scale printing realized at a rate above 10-3 mm3 s-1. This method is further scalable, indicating its potential to make fabrications of 3D structures with micro/nanoscale features in a practical time scale a reality.
Collapse
Affiliation(s)
- Paul Somers
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Zihao Liang
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jason E Johnson
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Liang Pan
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Xianfan Xu
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
15
|
Breloy L, Mhanna R, Malval JP, Brezová V, Jacquemin D, Pascal S, Siri O, Versace DL. Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chem Commun (Camb) 2021; 57:8973-8976. [PMID: 34486621 DOI: 10.1039/d1cc03607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Azacalixphyrins are unique aromatic macrocycles featuring strong absorption from the visible to the near-infrared (NIR) spectral ranges. This work demonstrates through EPR spin-trapping experiments that the N-alkyl tetrasubstituted azacalixphyrin (ACP) can lead to the formation of carbon-centered radicals initiating for the free-radical photopolymerization (FRP) of bio-based acrylate monomer upon the irradiation of several light emitting diodes, which emissions range from 455 to 660 nm. Compared to other previously reported systems, the tremendous advantage of the ACP photoinitiating system is its ability to promote photopolymerization on its own, avoiding the introduction of co-initiators. A new potential application of this promising photoinitiator is highlighted through the fabrication of well-defined microstructures under NIR laser diode irradiation at λ = 800 nm.
Collapse
Affiliation(s)
- Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| | - Rana Mhanna
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Vlasta Brezová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Radlinského 9, Bratislava SK-812 37, Slovak Republic
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS, Nantes F-44000, France.
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
16
|
Golvari P, Kuebler SM. Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography. MICROMACHINES 2021; 12:472. [PMID: 33919437 PMCID: PMC8143355 DOI: 10.3390/mi12050472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022]
Abstract
This review surveys advances in the fabrication of functional microdevices by multi-photon lithography (MPL) using the SU-8 material system. Microdevices created by MPL in SU-8 have been key to progress in the fields of micro-fluidics, micro-electromechanical systems (MEMS), micro-robotics, and photonics. The review discusses components, properties, and processing of SU-8 within the context of MPL. Emphasis is focused on advances within the last five years, but the discussion also includes relevant developments outside this period in MPL and the processing of SU-8. Novel methods for improving resolution of MPL using SU-8 and discussed, along with methods for functionalizing structures after fabrication.
Collapse
Affiliation(s)
- Pooria Golvari
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA;
| | - Stephen M. Kuebler
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA;
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
- Department of Material Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
17
|
Rouillon J, Arnoux C, Monnereau C. Determination of Photoinduced Radical Generation Quantum Efficiencies by Combining Chemical Actinometry and 19F NMR Spectroscopy. Anal Chem 2021; 93:2926-2932. [PMID: 33476133 DOI: 10.1021/acs.analchem.0c04540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We introduce a general and relatively straightforward protocol aimed at determining the absolute photoinduced radical generation efficiency via NMR monitoring. This approach relies on the use of a radical scavenger probe that combines a nitroxide moiety that specifically reacts with radicals and a trifluoromethyl group used as a 19F NMR signaling unit. Using an LED source, whose fluence is precisely determined by a chemical actinometry procedure also described herein, the method is used to determine the radical photogeneration quantum yields of three well-known polymerization initiators: azobisisobutyronitrile (AIBN), 4,4'-bis(N,N-diethylamino)benzophenone (BDEBP, a derivative of Michler's ethyl ketone), and 2,4,6-trimethylbenzoyl diphenylphosphine oxide (MAPO). The overall good agreement with values previously reported in the literature proves the robustness of this new method. We then extended the study to the precise measurement of the quantum yield of free-radical photogeneration on a newly synthesized photoinitiator used for two-photon direct laser writing. This study highlights the potential of this methodology for the quantitative determination of photoinduced radical generation efficiency used in many fields of applications.
Collapse
Affiliation(s)
- Jean Rouillon
- Laboratoire de Chimie, Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Caroline Arnoux
- Laboratoire de Chimie, Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Cyrille Monnereau
- Laboratoire de Chimie, Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| |
Collapse
|