1
|
Dashti A, Ahmadi M. Recent Advances in Controlled Production of Long-Chain Branched Polyolefins. Macromol Rapid Commun 2024; 45:e2300746. [PMID: 38488683 DOI: 10.1002/marc.202300746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Polyolefins, composed of carbon and hydrogen atoms, dominate global polymer production. This stems from the wide range of physical and mechanical properties that various polyolefins can cover. Their versatile properties are largely tuned by chain microstructure, including molar mass distribution, comonomer content, and long-chain branching (LCB). Specifically, LCB imparts unique characteristics, notably enhances processability crucial for downstream applications. Tailoring LCB structural features has encouraged academic and industrial efforts, chronicle in this review from a chemistry standpoint. While encompassing post-reaction modification based traditional methods like peroxide grafting, ionizing beam irradiation, and coupling reactions, the main focus is given to catalyst-centric strategies and innovative polymerization schemes. The advent of single-site catalysts-metallocenes and late transition metals catalysts-amplifies interest in tailored chemical methods, but the progress in LCB formation flourishes via tandem catalytic systems and bimetallic catalysts under controlled reaction conditions. Specifically, the breakthrough in coordinative chain transfer polymerization unveils a novel avenue for controlled LCB synthesis by sequential chain propagation, transfer, liberation, and enchainment. This short review highlights recent approaches for the production of LCB polyolefins that can provide a roadmap crucial for researchers in academia and industry, steering their efforts toward further advancements in the production of tailored polyolefin.
Collapse
Affiliation(s)
- Arezoo Dashti
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
| | - Mostafa Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
2
|
Mundil R, Bravo C, Merle N, Zinck P. Coordinative Chain Transfer and Chain Shuttling Polymerization. Chem Rev 2024; 124:210-244. [PMID: 38085864 DOI: 10.1021/acs.chemrev.3c00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Coordinative chain transfer polymerization, CCTP, is a degenerative chain transfer polymerization process that has a wide range of applications. It allows a highly controlled synthesis of polyolefins, stereoregular polydienes, and stereoregular polystyrene, including (stereo)block as well as statistical copolymers thereof. It also shows a green character by allowing catalyst economy during the synthesis of such polymers. CCTP notably allows the end functionalization of both the commodity and stereoregular specialty polymers aforementionned, control of the composition of statistical copolymers without adjusting the feed, and quantitative formation of 1-alkenes from ethene. A one-pot one-step synthesis of the original multiblock microstructures and architectures by chain shuttling polymerization (CSP) is also an asset of CCTP. This methodology takes advantage of the simultaneous presence of two catalysts of different selectivity toward comonomers that produce blocks of different composition/microstructure, while still allowing the chain transfer. This affords the production of highly performant functional polymers, such as thermoplastic elastomers and adhesives, among others. This approach has been extended to cyclic esters' and ethers' ring-opening polymerization, providing new types of multiblock microstructure. The present Review provides the state of the art in the field with a focus on the last 10 years.
Collapse
Affiliation(s)
- Robert Mundil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, 128 40 Prague 2, Czech Republic
| | - Catarina Bravo
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Nicolas Merle
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
3
|
Dashti A, Ahmadi M, Haddadi-Asl V, Ahmadjo S, Mortazavi SMM. Tandem coordinative chain transfer polymerization for long chain branched Polyethylene: The role of chain displacement. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Wang Y, Qin Y, Dong JY. Trouble-free combination of ω-alkenylmethyldichlorosilane copolymerization-hydrolysis chemistry and metallocene catalyst system for highly effective and efficient direct synthesis of long-chain-branched polypropylene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Santoro O, Piola L, Mc Cabe K, Lhost O, Den Dauw K, Fernandez A, Welle A, Maron L, Carpentier JF, Kirillov E. Comonomer-Controlled Synthesis of Long-Chain Branched (LCB)-Polyethylene. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Nifant'ev IE, Vinogradov AA, Vinogradov AA, Sadrtdinova GI, Komarov PD, Minyaev ME, Ilyin SO, Kiselev AV, Samurganova TI, Ivchenko PV. Synthesis, molecular structure and catalytic performance of heterocycle-fused cyclopentadienyl-amido CGC of Ti (IV) in ethylene (co)polymerization: The formation and precision rheometry of long-chain branched polyethylenes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Wolff P, Dickert A, Kretschmer WP, Kempe R. iPP/PE Multiblock Copolymers for Plastic Blend Recycling Synthesized by Coordinative Chain Transfer Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Wolff
- Lehrstuhl Anorganische Chemie II─Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| | - André Dickert
- Lehrstuhl Anorganische Chemie II─Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| | - Winfried P. Kretschmer
- Lehrstuhl Anorganische Chemie II─Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| | - Rhett Kempe
- Lehrstuhl Anorganische Chemie II─Katalysatordesign, Sustainable Chemistry Centre, Universität Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
8
|
Santoro O, Piola L, Mc Cabe K, Lhost O, Den Dauw K, Fernandez A, Welle A, Maron L, Carpentier JF, Kirillov E. Group 12 and 13 metal-alkenyl promoted generation of long-chain branching in metallocene-based polyethylene. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Shi X, Li S, Reiß M, Spannenberg A, Holtrichter-Rößmann T, Reiß F, Beweries T. 1-Zirconacyclobuta-2,3-dienes: synthesis of organometallic analogs of elusive 1,2-cyclobutadiene, unprecedented intramolecular C-H activation, and reactivity studies. Chem Sci 2021; 12:16074-16084. [PMID: 35024129 PMCID: PMC8672727 DOI: 10.1039/d1sc06052j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
The structure, bonding, and reactivity of small, highly unsaturated ring systems is of fundamental interest for inorganic and organic chemistry. Four-membered metallacyclobuta-2,3-dienes, also referred to as metallacycloallenes, are among the most exotic examples for ring systems as these represent organometallic analogs of 1,2-cyclobutadiene, the smallest cyclic allene. Herein, the synthesis of the first examples of 1-zirconacyclobuta-2,3-dienes of the type [Cp'2Zr(Me3SiC3SiMe3)] (Cp'2 = rac-(ebthi), (ebthi = 1,2-ethylene-1,1'-bis(η5-tetrahydroindenyl)) (2a); rac-Me2Si(thi)2, thi = (η5-tetrahydroindenyl), (2b)) is presented. Both complexes undergo selective thermal C-H activation at the 7-position of the ansa-cyclopentadienyl ligand to produce a new type of "tucked-in" zirconocene system, 3a and 3b, that possesses a η3-propargyl/allenyl ligand. Both types of complexes react with carbonyl compounds, producing enynes in the case of 2a and 2b, as well as η1-allenyl complexes for 3a and 3b. Computational analysis of the structure and bonding of 2a and 3a reveals significant differences to a previously described related Ti complex. All complexes were fully characterised, including X-ray crystallography and experimental results were supported by DFT analysis.
Collapse
Affiliation(s)
- Xinzhe Shi
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Sihan Li
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Melanie Reiß
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| | | | - Fabian Reiß
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
10
|
Hassanian-Moghaddam D, Mortazavi SMM, Ahmadjo S, Doveirjavi M, Rahmati A, Ahmadi M. Resolving long-chain branch formation in tandem catalytic coordinative chain transfer polymerization of ethylene via thermal analysis. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Al-alkenyl-induced formation of long-chain branched polyethylene via coordinative tandem insertion and chain-transfer polymerization using (nBuCp)2ZrCl2/MAO systems: An experimental and theoretical study. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Mechanistic study on the metallocene-based tandem catalytic coordinative chain transfer polymerization for the synthesis of highly branched polyolefins. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Kirillov E, Carpentier JF. {Cyclopentadienyl/Fluorenyl}-Group 4 ansa-Metallocene Catalysts for Production of Tailor-Made Polyolefins. CHEM REC 2020; 21:357-375. [PMID: 33332719 DOI: 10.1002/tcr.202000142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The development of new metallocene-based polymerization catalysts and innovative processes derived thereof still constitutes a challenge for the manufacturing of polyolefinic materials with tailored properties (e. g. particular microstructure or topology, ultra-high molecular weight, high melting transition, and their combinations) for contemporary commercial applications. This personal account summarizes our continuing endeavors to advance the family of industry-relevant stereoselective propylene polymerization catalysts based on C1 -symmetric group 4 ansa-metallocenes incorporating multi-substituted fluorenyl-cyclopentadienyl {Cp/Flu} ligands. Within the framework of this project, valuable structural and catalytic data, harvested both for neutral metallocenes and for metallocenium ion-pairs, have been used for rational design of more efficient catalytic systems, reluctant towards side reactions, and for providing new stereoregular value-added polymer materials.
Collapse
Affiliation(s)
- Evgueni Kirillov
- UMR 6226 CNRS - Univ Rennnes, Organometallics: Materials & Catalysis Institut des Sciences Chimiques de Rennes (ISCR), Campus de Beaulieu, F-35042, Rennes, France
| | - Jean-François Carpentier
- UMR 6226 CNRS - Univ Rennnes, Organometallics: Materials & Catalysis Institut des Sciences Chimiques de Rennes (ISCR), Campus de Beaulieu, F-35042, Rennes, France
| |
Collapse
|