1
|
Bayliss N, Concilio M, Plucinski A, Yilmaz G, Becer CR, Schmidt BVKJ. Self-Coacervation of Oligo(ethylene glycol) and Oligo(2-ethyl-2-oxazoline)-Based Double Hydrophilic Brush Block Copolymers in Aqueous Solution. Macromol Rapid Commun 2025:e2500151. [PMID: 40249329 DOI: 10.1002/marc.202500151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Coacervates are a highly relevant class of structures formed via liquid-liquid phase separation and new coacervate-forming polymers are highly sought after. Here, the formation of simple coacervate droplets from a double hydrophilic block copolymer (DHBC) with the combination of poly(oligo ethylene glycol methacrylate) (POEGMA) and poly(oligo 2-ethyl-2-oxazoline methacrylate) (POEtOx) without the use of external triggers or charges is shown. At a high concentration of 25 wt.%, the DHBC forms coacervate droplets with sizes in the low micrometre range. The droplets have relatively high stability over a long period of time with only minor coalescence observed after 4 weeks. At low concentrations, no coacervation is observed. Furthermore, copolymers of the monomers also do not show coacervation clearly indicating that the DHBC architecture is required to form the desired structures. The addition of guest polymers and biomacromolecules at low concentrations shows a specific partitioning behaviour with a preference for the polymer or the aqueous phase. At high guest concentrations, enrichment in the aqueous phase is observed, in line with common water-in-water (w/w) emulsions. These findings constitute a new direction for coacervate systems that are of interest for biotechnology, synthetic cell environment mimics and drug delivery.
Collapse
Affiliation(s)
- Niamh Bayliss
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matilde Concilio
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
2
|
Hammond J, Richards CJ, Ko Y, Jonker T, Åberg C, Roos WH, Lira RB. Membrane Fusion-Based Drug Delivery Liposomes Transiently Modify the Material Properties of Synthetic and Biological Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408039. [PMID: 40007088 PMCID: PMC11947515 DOI: 10.1002/smll.202408039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Many drug targets are located in intracellular compartments of cells but they often remain inaccessible to standard imaging and therapeutic agents. To aid intracellular delivery, drug carrier nanoparticles have been used to overcome the barrier imposed by the plasma membrane. The carrier must entrap large amounts of cargo, efficiently and quickly deliver the cargo in the cytosol or other intracellular compartments, and must be inert; they should not induce cellular responses or alter the cell state in the course of delivery. This study demonstrates that cationic liposomes with high charge density efficiently fuse with synthetic membranes and the plasma membrane of living cells. Direct fusion efficiently delivers large amounts of cargo to cells and cell-like vesicles within seconds, bypassing slow and often inefficient internalization-based pathways. These effects depend on liposome charge density, concentration, and the helper lipid. However, fusion-mediated cargo delivery results in the incorporation of large amounts of foreign lipids, causing changes to the material properties of these membranes, namely modifications in membrane packing and fluidity, induction of membrane curvature, decrease in surface tension, and the formation of (short-lived) pores. Importantly, these effects are transient and liposome removal allows cells to recover their state prior to liposome interaction.
Collapse
Affiliation(s)
- Jayna Hammond
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Ceri J. Richards
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyRijksuniversiteit GroningenGroningenThe Netherlands
| | - YouBeen Ko
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Thijs Jonker
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Christoffer Åberg
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyRijksuniversiteit GroningenGroningenThe Netherlands
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Rafael B. Lira
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
- Present address:
Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
3
|
Saki Norouzi G, Rahimpour F. Investigating and Optimizing Insulin Partitioning with Conjugated Au Nanoparticles in Aqueous Two-Phase Systems Using Response Surface Methodology. ACS OMEGA 2024; 9:9676-9685. [PMID: 38434876 PMCID: PMC10905728 DOI: 10.1021/acsomega.3c09664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
This study investigated the impact of bioconjugation on the partitioning of insulin, a clinically valuable protein, in an aqueous two-phase system. Gold nanoparticles of different sizes were synthesized and conjugated with insulin. Analysis of the conjugated insulin showed that the insulin remains fully active. Conjugated gold nanoparticles (AuNPs/insulin) were used in polyethylene glycol (PEG)-dextran aqueous two-phase systems to investigate the effect of pH, PEG and dextran molecular weights, PEG and dextran concentrations, AuNPs/insulin dosage, and nanoparticle size on the partition coefficient. These systems were chosen for their biocompatibility and low toxicity. Response surface methodology with D-optimal design was used to model and optimize these systems and their affected parameters. At the optimum condition of a pH = 8 system containing 21% PEG 4000, 5% dextran 100,000, and 100 IU AuNPs/insulin, the partition coefficient of AuNPs/insulin was found to be 192.96, which is in agreement with the empirical partition coefficient of 189.2. This is significantly higher than the partition coefficient of free insulin in a similar system. This approach could be used to overcome limitations in the feasibility of aqueous two-phase systems for industrial-scale purification of biomolecules and biopharmaceuticals.
Collapse
Affiliation(s)
- Ghazal Saki Norouzi
- Biotechnology Research Laboratory,
Chemical Engineering Department, Faculty of Petroleum and Chemical
Engineering, Razi University, Kermanshah 67144-14971, Iran
| | - Farshad Rahimpour
- Biotechnology Research Laboratory,
Chemical Engineering Department, Faculty of Petroleum and Chemical
Engineering, Razi University, Kermanshah 67144-14971, Iran
| |
Collapse
|
4
|
Stano P, Tsumoto K. Membranous and Membraneless Interfaces-Origins of Artificial Cellular Complexity. Life (Basel) 2023; 13:1594. [PMID: 37511969 PMCID: PMC10381752 DOI: 10.3390/life13071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Living cell architecture is based on the concept of micro-compartmentation at different hierarchical levels [...].
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
5
|
Shimizu A, Hifumi E, Kojio K, Takahara A, Higaki Y. Modulation of Double Zwitterionic Block Copolymer Aggregates by Zwitterion-Specific Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14760-14766. [PMID: 34889092 DOI: 10.1021/acs.langmuir.1c02809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transformable double hydrophilic block copolymer assemblies are valid as a biocompatible smart macromolecular system. The molecular mechanisms in the spontaneous assembly of double zwitterionic diblock copolymers composed of a poly(carboxybetaine methacrylate) (PCB2) and a poly(sulfobetaine methacrylate) (PSB4) chains (PCB2-b-PSB4) were investigated by the modulation of the aggregates in response to nondetergent zwitterions. The PCB2-b-PSB4 diblock copolymers with a high degree of polymerization PSB4 block produced aggregates in salt-free water through "zwitterion-specific" interactions. The PCB2-b-PSB4 aggregates were dissociated by the addition of nondetergent sulfobetaine (SB4) and carboxybetaine (CB2) molecules, while the aggregates showed different aggregation modulation processes for SB4 and CB2. Zwitterions with different charged groups from SB4 and CB2, glycine and taurine, hardly disrupted the PCB2-b-PSB4 aggregates. The PCB2-b-PSB4 aggregate modulation efficiency of SBs associated with the intercharge hydrocarbon spacer length (CSL) rather than the symmetry with the SB in the PSB chain. These zwitterion-specific modulation behaviors were rationalized based on the nature of zwitterions including partial charge density, dipole moment, and hydrophobic interactions depending on the charged groups and CSL.
Collapse
Affiliation(s)
- Akane Shimizu
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Emi Hifumi
- Research Promotion Institute, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Ken Kojio
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute of Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Research Center for Negative Emission Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| |
Collapse
|
6
|
Plucinski A, Pavlovic M, Schmidt BVKJ. All-Aqueous Multi-phase Systems and Emulsions Formed via Low-Concentration Ultra-high-Molar Mass Polyacrylamides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | | |
Collapse
|
7
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|