1
|
Cho C, Kim JM. Scaling Relationships of the Structural and Rheological Behavior of Tadpole Polymer Chains in Dilute Solution Systems Using Brownian Dynamics Simulations. Polymers (Basel) 2024; 16:2871. [PMID: 39458699 PMCID: PMC11510819 DOI: 10.3390/polym16202871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Tadpole polymers, also known as lasso polymers, feature molecular structures that combine a single ring with a single linear side branch, leading to distinct conformational, dynamical, and rheological characteristics compared to their corresponding counterparts, particularly pure linear and pure ring polymers. To elucidate the mechanisms underlying these distinctive behaviors, comprehensive mesoscopic Brownian dynamics (BD) simulations of dilute solution systems of tadpole polymers were conducted using a bead-rod chain model under both equilibrium and flow conditions. Three types of tadpole polymer chains were prepared by varying the ring-to-linear ratio within the tadpole chain and comparing them with the corresponding linear and ring chains. Depending on this ratio, tadpole polymer chains exhibit entirely different structural properties and rotational dynamics, both in equilibrium and under shear flow. As the linear proportion within the tadpole chain increased, the structural, dynamic, and rheological properties of the tadpole polymer chains became more similar to those of pure linear polymers. Conversely, with an increasing ring proportion, these properties began to resemble those of pure ring polymers. Based on these observed tendencies, a simple general scaling expression is proposed for tadpole polymer properties that integrates scaling expressions for both pure linear and pure ring polymers. Our results indicate that the conformational, dynamic, and rheological properties of tadpole polymers, as predicted by these simple scaling expressions, are in good agreement with the simulated values, a result we consider statistically significant.
Collapse
Affiliation(s)
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Kyonggi-do, Republic of Korea;
| |
Collapse
|
2
|
Wang D, Wen X, Zhang D, Tan X, Tang J. Single-polymer dynamics of starch-like branched ring polymers in steady shear flow. Int J Biol Macromol 2023; 227:173-181. [PMID: 36535348 DOI: 10.1016/j.ijbiomac.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The stretching dynamics and dynamical behaviors of individual branched ring polymer (BRP), a coarse-grained model for some types of the starch, in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. By analyzing the stretched configuration of BRPs, we find the polymer size increases nonmonotonically with increasing branch length. Meanwhile, the decrease of the alignment angle of the stretched configuration of BRPs follows a universal power law during the first downward phase as the shear rate increases. Constructing the three-dimensional surface of the polymer's ring backbone and tracing the temporal fluctuations of the surface's normal vector along the simulation trajectory, the tumbling and tank-treading motion are clearly reflected by periodic and non-periodic changes of the normal vector. Interestingly, these temporal changes are much more regular than that of the gyration tensor. Thus, a novel cross-correlation function, which is the correlation between fluctuations of the normal vector along the flow direction and the velocity-gradient direction, is proposed to analyze the tumbling motion that usually coexists with the tank-treading motion. This function can naturally address the fails of traditional method that analyzing the tumbling motion by determining the correlation of temporal fluctuations of the gyration tensor Gαα. By analyzing the dynamical behaviors of BRPs, diverse dependences of the tumbling frequency ωTB and tank-treading frequency ωTT on the shear rate γ̇ are observed at a wide range of shear rates and polymer sizes. Furthermore, our simulations also reveal that the tank-treading motion is more stable than the tumbling motion for small-branch-size BRPs but the tumbling motion is more stable than the tank-treading motion for large-branch-size BRPs.
Collapse
Affiliation(s)
- Deyin Wang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Xiaohui Wen
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China.
| | - Dong Zhang
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xinguan Tan
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajun Tang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
3
|
Kim J, Kim JM, Baig C. Intrinsic structure and dynamics of monolayer ring polymer melts. SOFT MATTER 2021; 17:10703-10715. [PMID: 34783328 DOI: 10.1039/d1sm01192h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present the general structural and dynamical characteristics of flexible ring polymers in narrowly confined two-dimensional (2D) melt systems using atomistic molecular dynamics simulations. The results are further analyzed via direct comparison with the 2D linear analogue as well as the three-dimensional (3D) ring and linear melt systems. It is observed that dimensional restriction in 2D confined systems results in an increase in the intrinsic chain stiffness of the ring polymer. Fundamentally, this arises from an entropic penalty on polymer chains along with a reduction in the available chain configuration states in phase space and spatial choices for individual segmental walks. This feature in combination with the intermolecular interactions between neighboring ring chains leads to an overall extended interpenetrated chain configuration for the 2D ring melt. In contrast to the generally large differences in structural and dynamical properties between ring and linear polymers in 3D melt systems, relatively similar local-to-global chain structures and dynamics are observed for the 2D ring and linear melts. This is attributed to the general structural similarity (i.e., extended double-stranded chain conformations), the less effective role of the chain ends, and the absence of complex topological constraints between chains (i.e., interchain entanglement and mutual ring threading) in the 2D confined systems compared with the corresponding 3D bulk systems.
Collapse
Affiliation(s)
- Jinseong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea.
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Kyonggi-do 16227, South Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea.
| |
Collapse
|
4
|
Jeong SH, Ha TY, Cho S, Roh EJ, Kim JM, Baig C. Melt Rheology of Short-Chain Branched Ring Polymers in Shear Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seung Heum Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Tae Yong Ha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Soowon Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Eun Jung Roh
- KOLON Advanced Research Cluster, KOLON One & Only Tower, 110, Magokdong-ro, Gangseo-gu, Seoul 07793, South Korea
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Kyeonggi-do, South Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| |
Collapse
|
5
|
Chubak I, Likos CN, Smrek J. Topological and threading effects in polydisperse ring polymer solutions. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1883140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Iurii Chubak
- Faculty of Physics, University of Vienna, Vienna, Austria
| | | | - Jan Smrek
- Faculty of Physics, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Herschberg T, Carrillo JMY, Sumpter BG, Panagiotou E, Kumar R. Topological Effects Near Order–Disorder Transitions in Symmetric Diblock Copolymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tom Herschberg
- Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eleni Panagiotou
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Jeong SH, Cho S, Ha TY, Roh EJ, Baig C. Structural and Dynamical Characteristics of Short-Chain Branched Ring Polymer Melts at Interface under Shear Flow. Polymers (Basel) 2020; 12:polym12123068. [PMID: 33371365 PMCID: PMC7767370 DOI: 10.3390/polym12123068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/02/2022] Open
Abstract
We present a detailed analysis of the interfacial chain structure and dynamics of confined polymer melt systems under shear over a wide range of flow strengths using atomistic nonequilibrium molecular dynamics simulations, paying particular attention to the rheological influence of the closed-loop ring geometry and short-chain branching. We analyzed the interfacial slip, characteristic molecular mechanisms, and deformed chain conformations in response to the applied flow for linear, ring, short-chain branched (SCB) linear, and SCB ring polyethylene melts. The ring topology generally enlarges the interfacial chain dimension along the neutral direction, enhancing the dynamic friction of interfacial chains moving against the wall in the flow direction. This leads to a relatively smaller degree of slip (ds) for the ring-shaped polymers compared with their linear analogues. Furthermore, short-chain branching generally resulted in more compact and less deformed chain structures via the intrinsically fast random motions of the short branches. The short branches tend to be oriented more perpendicular (i.e., aligned in the neutral direction) than parallel to the backbone, which is mostly aligned in the flow direction, thereby enhancing the dynamic wall friction of the moving interfacial chains toward the flow direction. These features afford a relatively lower ds and less variation in ds in the weak-to-intermediate flow regimes. Accordingly, the interfacial SCB ring system displayed the lowest ds among the studied polymer systems throughout these regimes owing to the synergetic effects of ring geometry and short-chain branching. On the contrary, the structural disturbance exerted by the highly mobile short branches promotes the detachment of interfacial chains from the wall at strong flow fields, which results in steeper increasing behavior of the interfacial slip for the SCB polymers in the strong flow regime compared to the pure linear and ring polymers.
Collapse
Affiliation(s)
- Seung Heum Jeong
- Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Korea; (S.H.J.); (S.C.); (T.Y.H.)
| | - Soowon Cho
- Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Korea; (S.H.J.); (S.C.); (T.Y.H.)
| | - Tae Yong Ha
- Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Korea; (S.H.J.); (S.C.); (T.Y.H.)
| | - Eun Jung Roh
- KOLON Advanced Research Cluster, KOLON One & Only Tower, 110, Magokdong-ro, Gangseo-gu, Seoul 07793, Korea;
| | - Chunggi Baig
- Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Korea; (S.H.J.); (S.C.); (T.Y.H.)
- Correspondence: ; Tel.: +82-52-217-2538; Fax: +82-52-217-2649
| |
Collapse
|