1
|
Watanabe R, Nakamura S, Sugahara A, Kishi M, Sato H, Hagihara H, Shinzawa H. Revealing Molecular-Scale Structural Changes in Polymer Nanocomposites during Thermo-Oxidative Degradation Using Evolved Gas Analysis with High-Resolution Time-of-Flight Mass Spectrometry Combined with Principal Component Analysis and Kendrick Mass Defect Analysis. Anal Chem 2024; 96:2628-2636. [PMID: 38287876 PMCID: PMC10867796 DOI: 10.1021/acs.analchem.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
This study introduces a novel method that utilizes evolved gas analysis with time-of-flight mass spectrometry (EGA-TOFMS) coupled with principal component analysis (PCA) and Kendrick mass defect (KMD) analysis, called EGA-PCA-KMD, to analyze complex structural changes in polymer materials during thermo-oxidative degradation. While EGA-TOFMS captures exact mass data related to the degradation components in the temperature-dependent mass spectra of the evolved products, numerous high-resolution mass spectra with large amounts of ion signals and varying intensities provide challenges for interpretation. To address this, we employed mathematical decomposition through PCA to selectively extract information about the ion series specific to the products that evolved from the degradation components. Additionally, KMD analysis was applied to the attribution of the exact mass signals extracted from the PCA, which categorizes and visualizes depending on the molecular compositions in a two-dimensional plot. The complex structural changes of the triblock copolymer thermoplastic elastomer and its nanocomposites containing nanodiamonds during thermo-oxidative degradation were elucidated using EGA-PCA-KMD to demonstrate the effectiveness of this characterization technique for polymer degradation. Furthermore, it is revealed that the formation of rigid matrix-filler interfacial interaction via the π-π stacking and chemical bonds in the nanocomposites contributes to improvement in the stability toward thermo-oxidative degradation. Our results highlight the benefits of EGA-PCA-KMD and provide valuable insights into polymer degradation.
Collapse
Affiliation(s)
- Ryota Watanabe
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Sayaka Nakamura
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Aki Sugahara
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Mayumi Kishi
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hiroaki Sato
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hideaki Hagihara
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hideyuki Shinzawa
- Research
Institute for Sustainable Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
2
|
Tu X, Zhu X, Bo S, Zhang X, Miao R, Wen G, Chen C, Li J, Zhou Y, Liu Q, Chen D, Shao H, Yan D, Li Y, Jia J, Wang S. A Universal Approach for Sustainable Urea Synthesis via Intermediate Assembly at the Electrode/Electrolyte Interface. Angew Chem Int Ed Engl 2024; 63:e202317087. [PMID: 38055225 DOI: 10.1002/anie.202317087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Electrocatalytic C-N coupling process is indeed a sustainable alternative for direct urea synthesis and co-upgrading of carbon dioxide and nitrate wastes. However, the main challenge lies in the unactivated C-N coupling process. Here, we proposed a strategy of intermediate assembly with alkali metal cations to activate C-N coupling at the electrode/electrolyte interface. Urea synthesis activity follows the trend of Li+
Collapse
Affiliation(s)
- Xiaojin Tu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xiaoran Zhang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Ruping Miao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Guobin Wen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Chen Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Jing Li
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Yangyang Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Dawei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Dafeng Yan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, P. R. China
| | - Yafei Li
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
3
|
Photodegradation behavior of polyethylene terephthalate analyzed by MALDI-TOFMS and ATR-FTIR microscopic analysis in combination with two-trace two-dimensional (2T2D) correlation mapping. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Watanabe R, Sugahara A, Hagihara H, Mizukado J, Shinzawa H. Molecular-scale deformation of glass-fiber-reinforced polypropylene probed by rheo-optical Fourier transform infrared imaging combined with a two-trace two-dimensional correlation technique. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|